Suppr超能文献

酿酒酵母WW结构域及其相互作用蛋白的比较分析。

Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins.

作者信息

Hesselberth Jay R, Miller John P, Golob Anna, Stajich Jason E, Michaud Gregory A, Fields Stanley

机构信息

Department of Genome Sciences, University of Washington, Box 357730, Seattle, WA 98195, USA.

出版信息

Genome Biol. 2006;7(4):R30. doi: 10.1186/gb-2006-7-4-r30. Epub 2006 Apr 10.

Abstract

BACKGROUND

The WW domain is found in a large number of eukaryotic proteins implicated in a variety of cellular processes. WW domains bind proline-rich protein and peptide ligands, but the protein interaction partners of many WW domain-containing proteins in Saccharomyces cerevisiae are largely unknown.

RESULTS

We used protein microarray technology to generate a protein interaction map for 12 of the 13 WW domains present in proteins of the yeast S. cerevisiae. We observed 587 interactions between these 12 domains and 207 proteins, most of which have not previously been described. We analyzed the representation of functional annotations within the network, identifying enrichments for proteins with peroxisomal localization, as well as for proteins involved in protein turnover and cofactor biosynthesis. We compared orthologs of the interacting proteins to identify conserved motifs known to mediate WW domain interactions, and found substantial evidence for the structural conservation of such binding motifs throughout the yeast lineages. The comparative approach also revealed that several of the WW domain-containing proteins themselves have evolutionarily conserved WW domain binding sites, suggesting a functional role for inter- or intramolecular association between proteins that harbor WW domains. On the basis of these results, we propose a model for the tuning of interactions between WW domains and their protein interaction partners.

CONCLUSION

Protein microarrays provide an appealing alternative to existing techniques for the construction of protein interaction networks. Here we built a network composed of WW domain-protein interactions that illuminates novel features of WW domain-containing proteins and their protein interaction partners.

摘要

背景

WW结构域存在于大量参与多种细胞过程的真核生物蛋白质中。WW结构域结合富含脯氨酸的蛋白质和肽配体,但酿酒酵母中许多含WW结构域蛋白质的蛋白质相互作用伙伴在很大程度上尚不清楚。

结果

我们使用蛋白质微阵列技术为酿酒酵母蛋白质中存在的13个WW结构域中的12个生成了蛋白质相互作用图谱。我们观察到这12个结构域与207种蛋白质之间有587种相互作用,其中大多数此前未被描述。我们分析了网络内功能注释的代表性,确定了过氧化物酶体定位蛋白以及参与蛋白质周转和辅因子生物合成的蛋白质的富集情况。我们比较了相互作用蛋白质的直系同源物,以识别已知介导WW结构域相互作用的保守基序,并发现了在整个酵母谱系中此类结合基序结构保守的大量证据。比较方法还揭示,几种含WW结构域的蛋白质本身具有进化上保守的WW结构域结合位点,这表明含WW结构域的蛋白质之间分子间或分子内缔合具有功能作用。基于这些结果,我们提出了一个调节WW结构域与其蛋白质相互作用伙伴之间相互作用的模型。

结论

蛋白质微阵列是构建蛋白质相互作用网络的现有技术的一种有吸引力的替代方法。在这里,我们构建了一个由WW结构域-蛋白质相互作用组成的网络,该网络揭示了含WW结构域蛋白质及其蛋白质相互作用伙伴的新特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4319/1557994/398fb5d3b826/gb-2006-7-4-r30-1.jpg

相似文献

1
Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins.
Genome Biol. 2006;7(4):R30. doi: 10.1186/gb-2006-7-4-r30. Epub 2006 Apr 10.
2
Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40.
J Mol Biol. 2002 Dec 6;324(4):807-22. doi: 10.1016/s0022-2836(02)01145-2.
3
Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes.
Mol Genet Genomics. 2015 Jun;290(3):807-24. doi: 10.1007/s00438-014-0958-6. Epub 2014 Nov 26.
4
GAIA: a gram-based interaction analysis tool--an approach for identifying interacting domains in yeast.
BMC Bioinformatics. 2009 Jan 30;10 Suppl 1(Suppl 1):S60. doi: 10.1186/1471-2105-10-S1-S60.
6
WW domains provide a platform for the assembly of multiprotein networks.
Mol Cell Biol. 2005 Aug;25(16):7092-106. doi: 10.1128/MCB.25.16.7092-7106.2005.
8
Conserved network motifs allow protein-protein interaction prediction.
Bioinformatics. 2004 Dec 12;20(18):3346-52. doi: 10.1093/bioinformatics/bth402. Epub 2004 Jul 9.

引用本文的文献

2
Robustness quantification of a mutant library screen revealed key genetic markers in yeast.
Microb Cell Fact. 2024 Aug 4;23(1):218. doi: 10.1186/s12934-024-02490-2.
4
Regulation of the endocytosis and prion-chaperoning machineries by yeast E3 ubiquitin ligase Rsp5 as revealed by orthogonal ubiquitin transfer.
Cell Chem Biol. 2021 Sep 16;28(9):1283-1297.e8. doi: 10.1016/j.chembiol.2021.02.005. Epub 2021 Mar 4.
5
Coupling Conjugation and Deconjugation Activities to Achieve Cellular Ubiquitin Dynamics.
Trends Biochem Sci. 2020 May;45(5):427-439. doi: 10.1016/j.tibs.2020.01.008. Epub 2020 Feb 28.
7
Ubiquitination of ERMES components by the E3 ligase Rsp5 is involved in mitophagy.
Autophagy. 2017 Jan 2;13(1):114-132. doi: 10.1080/15548627.2016.1252889. Epub 2016 Nov 15.
8
Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners.
EMBO Rep. 2015 Dec;16(12):1699-712. doi: 10.15252/embr.201540620. Epub 2015 Oct 27.
9
The discovery of modular binding domains: building blocks of cell signalling.
Nat Rev Mol Cell Biol. 2015 Nov;16(11):691-8. doi: 10.1038/nrm4068. Epub 2015 Sep 30.
10
Role of Rsp5 ubiquitin ligase in biogenesis of rRNA, mRNA and tRNA in yeast.
RNA Biol. 2015;12(12):1265-74. doi: 10.1080/15476286.2015.1094604.

本文引用的文献

1
Rapid identification of 14-3-3-binding proteins by protein microarray analysis.
J Neurosci Methods. 2006 Apr 15;152(1-2):278-88. doi: 10.1016/j.jneumeth.2005.09.015. Epub 2005 Nov 2.
2
A human protein-protein interaction network: a resource for annotating the proteome.
Cell. 2005 Sep 23;122(6):957-68. doi: 10.1016/j.cell.2005.08.029.
3
Comparative genomics and disorder prediction identify biologically relevant SH3 protein interactions.
PLoS Comput Biol. 2005 Aug;1(3):e26. doi: 10.1371/journal.pcbi.0010026. Epub 2005 Aug 12.
4
WW domains provide a platform for the assembly of multiprotein networks.
Mol Cell Biol. 2005 Aug;25(16):7092-106. doi: 10.1128/MCB.25.16.7092-7106.2005.
5
Effect of sampling on topology predictions of protein-protein interaction networks.
Nat Biotechnol. 2005 Jul;23(7):839-44. doi: 10.1038/nbt1116.
6
Local modeling of global interactome networks.
Bioinformatics. 2005 Sep 1;21(17):3548-57. doi: 10.1093/bioinformatics/bti567. Epub 2005 Jul 5.
8
A high throughput screen to identify substrates for the ubiquitin ligase Rsp5.
J Biol Chem. 2005 Aug 19;280(33):29470-8. doi: 10.1074/jbc.M502197200. Epub 2005 Jun 13.
9
A probabilistic functional network of yeast genes.
Science. 2004 Nov 26;306(5701):1555-8. doi: 10.1126/science.1099511.
10
Apoptosis in yeast.
Curr Opin Microbiol. 2004 Dec;7(6):655-60. doi: 10.1016/j.mib.2004.10.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验