Suppr超能文献

血管紧张素II作为心脏恶病质的候选因素。

Angiotensin II as candidate of cardiac cachexia.

作者信息

Delafontaine Patrice, Akao Makoto

机构信息

Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.

出版信息

Curr Opin Clin Nutr Metab Care. 2006 May;9(3):220-4. doi: 10.1097/01.mco.0000222103.29009.70.

Abstract

PURPOSE OF REVIEW

Congestive heart failure is increasing in prevalence and represents a major public health problem. The syndrome of advanced heart failure often includes muscle wasting, commonly termed cardiac cachexia, which is a predictor of poor outcome. Mechanisms of cardiac cachexia are poorly understood, but there is recent evidence that increased angiotensin II, interacting with the insulin-like growth factor-1 system, plays an important role.

RECENT FINDINGS

In animals, angiotensin II produces weight loss through a pressor-independent mechanism, accompanied by decreased levels of circulating and skeletal muscle insulin-like growth factor-1 and increased mRNA levels of the ubiquitin ligases atrogin-1 and Muscle RING finger-1 in skeletal muscle. Reduced insulin-like growth factor-1 action in muscle leads to increased proteolysis, through the ubiquitin-proteasome pathway, and increased apoptosis. These changes are blocked by muscle-specific expression of insulin-like growth factor-1, likely to be via the Akt/mTOR/p70S6K signaling pathway.

SUMMARY

The link between insulin-like growth factor-1, the ubiquitin-proteasome pathway, and angiotensin II effects has widespread clinical implications for the understanding of mechanisms of catabolic conditions. Therapeutic interventions targeting cross-talk mechanisms between angiotensin II and insulin-like growth factor-1 effects could provide new approaches for the treatment of muscle wasting.

摘要

综述目的

充血性心力衰竭的患病率正在上升,是一个重大的公共卫生问题。晚期心力衰竭综合征通常包括肌肉萎缩,通常称为心脏恶病质,这是预后不良的一个预测指标。心脏恶病质的机制尚不清楚,但最近有证据表明,增加的血管紧张素II与胰岛素样生长因子-1系统相互作用,起着重要作用。

最新发现

在动物中,血管紧张素II通过一种不依赖于压力的机制导致体重减轻,同时伴有循环和骨骼肌胰岛素样生长因子-1水平降低,以及骨骼肌中泛素连接酶atrogin-1和肌肉环状指蛋白-1的mRNA水平升高。肌肉中胰岛素样生长因子-1作用的降低通过泛素-蛋白酶体途径导致蛋白水解增加和细胞凋亡增加。这些变化被胰岛素样生长因子-1的肌肉特异性表达所阻断,可能是通过Akt/mTOR/p70S6K信号通路。

总结

胰岛素样生长因子-1、泛素-蛋白酶体途径和血管紧张素II效应之间的联系对于理解分解代谢状态的机制具有广泛的临床意义。针对血管紧张素II和胰岛素样生长因子-1效应之间相互作用机制的治疗干预可能为治疗肌肉萎缩提供新的方法。

相似文献

1
Angiotensin II as candidate of cardiac cachexia.
Curr Opin Clin Nutr Metab Care. 2006 May;9(3):220-4. doi: 10.1097/01.mco.0000222103.29009.70.
2
Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.
Int J Biochem Cell Biol. 2013 Oct;45(10):2322-32. doi: 10.1016/j.biocel.2013.05.035. Epub 2013 Jun 13.
3
Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting.
J Clin Invest. 2005 Feb;115(2):451-8. doi: 10.1172/JCI22324.
4
Insulin-like growth factor-1 and muscle wasting in chronic heart failure.
Int J Biochem Cell Biol. 2005 Oct;37(10):2023-35. doi: 10.1016/j.biocel.2005.04.017.
5
Pathophysiology of peripheral muscle wasting in cardiac cachexia.
Curr Opin Clin Nutr Metab Care. 2005 May;8(3):249-54. doi: 10.1097/01.mco.0000165002.08955.5b.
6
IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression.
Am J Physiol Heart Circ Physiol. 2010 May;298(5):H1565-70. doi: 10.1152/ajpheart.00146.2010. Epub 2010 Mar 12.
9
Signaling pathways perturbing muscle mass.
Curr Opin Clin Nutr Metab Care. 2010 May;13(3):225-9. doi: 10.1097/mco.0b013e32833862df.

引用本文的文献

3
Cardiac Cachexia: Unaddressed Aspect in Cancer Patients.
Cells. 2022 Mar 14;11(6):990. doi: 10.3390/cells11060990.
4
Identification of serum predictors of n-acetyl-l-cysteine and isoproterenol induced remodelling in cardiac hypertrophy.
Turk J Biol. 2021 Jun 23;45(3):323-332. doi: 10.3906/biy-2101-56. eCollection 2021.
5
Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure.
Front Physiol. 2021 Jul 1;12:695047. doi: 10.3389/fphys.2021.695047. eCollection 2021.
7
Mitochondrial protection by simvastatin against angiotensin II-mediated heart failure.
Br J Pharmacol. 2019 Oct;176(19):3791-3804. doi: 10.1111/bph.14781. Epub 2019 Aug 24.
8
Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia.
Oxid Med Cell Longev. 2018 Mar 28;2018:2063179. doi: 10.1155/2018/2063179. eCollection 2018.
9
The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7).
Physiol Rev. 2018 Jan 1;98(1):505-553. doi: 10.1152/physrev.00023.2016.
10
Cardiac-Secreted Factors as Peripheral Metabolic Regulators and Potential Disease Biomarkers.
J Am Heart Assoc. 2016 May 31;5(6):e003101. doi: 10.1161/JAHA.115.003101.

本文引用的文献

1
Therapy insight: congestive heart failure, chronic kidney disease and anemia, the cardio-renal-anemia syndrome.
Nat Clin Pract Cardiovasc Med. 2005 Feb;2(2):95-100. doi: 10.1038/ncpcardio0094.
2
The ubiquitin-proteasome system and skeletal muscle wasting.
Essays Biochem. 2005;41:173-86. doi: 10.1042/EB0410173.
3
Angiotensin receptor blockers in congestive heart failure: evidence, concerns, and controversies.
Cardiol Rev. 2005 Nov-Dec;13(6):297-303. doi: 10.1097/01.crd.0000148236.34855.18.
4
Skeletal muscle hypertrophy and atrophy signaling pathways.
Int J Biochem Cell Biol. 2005 Oct;37(10):1974-84. doi: 10.1016/j.biocel.2005.04.018.
7
Identification of pathways controlling muscle protein metabolism in uremia and other catabolic conditions.
Curr Opin Nephrol Hypertens. 2005 Jul;14(4):378-82. doi: 10.1097/01.mnh.0000172726.75369.b2.
8
Muscle wasting in cardiac cachexia.
Int J Biochem Cell Biol. 2005 Oct;37(10):1938-47. doi: 10.1016/j.biocel.2005.03.013.
10
Molecular mechanisms activating muscle protein degradation in chronic kidney disease and other catabolic conditions.
Eur J Clin Invest. 2005 Mar;35(3):157-63. doi: 10.1111/j.1365-2362.2005.01473.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验