Zhu Hongping, Oswald Rainer B, Fan Hongjun, Roesky Herbert W, Ma Qingjun, Yang Zhi, Schmidt Hans-Georg, Noltemeyer Mathias, Starke Kerstin, Hosmane Narayan S
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany.
J Am Chem Soc. 2006 Apr 19;128(15):5100-8. doi: 10.1021/ja057731p.
Reactions of LAl with ethyne, mono- and disubstituted alkynes, and diyne to aluminacyclopropene LAl[eta2-C2(R1)(R2)] ((L = HC[(CMe)(NAr)]2, Ar = 2,6-iPr2C6H3); R1 = R2 = H, (1); R1 = H, R2 = Ph, (2); R1 = R2 = Me, (3); R1 = SiMe3, R2 = C[triple bond]CSiMe3, (4)) are reported. Compounds 1 and 2 were obtained in equimolar quantities of the starting materials at low temperature. The amount of C2H2 was controlled by removing an excess of C2H2 in the range from -78 to -50 degrees C. Compound 4 can be alternatively prepared by the substitution reaction of LAl[eta2-C2(SiMe3)2] with Me3SiC[triple bond]CC[triple bond]CSiMe3 or by the reductive coupling reaction of LAlI2 with potassium in the presence of Me3SiC[triple bond]CC[triple bond]CSiMe3. The reaction of LAl with excess C2H2 and PhC[triple bond]CH (<1:2) afforded the respective alkenylalkynylaluminum compounds LAl(CH=CH2)(C[triple bond]CH) (5) and LAl(CH=CHPh)(C[triple bond]CPh) (6). The reaction of LAl(eta2-C2Ph2) with C2H2 and PhC[triple bond]CH yielded LAl(CPh=CHPh)(C[triple bond]CH) (7) and LAl(CPh=CHPh)(C[triple bond]CPh) (8), respectively. Rationally, the formation of 5 (or 6) may proceed through the corresponding precursor 1 (or 2). The theoretical studies based on DFT calculations show that an interaction between the Al(I) center and the C[triple bond]C unit needs almost no activation energy. Within the AlC2 ring the computational Al-C bond order of ca. 1 suggests an Al-C sigma bond and therefore less pi electron delocalization over the AlC2 ring. The computed Al-eta2-C2 bond dissociation energies (155-82.6 kJ/mol) indicate a remarkable reactivity of aluminacyclopropene species. Finally, the 1H NMR spectroscopy monitored reaction of LAl(eta2-C2Ph2) and PhC[triple bond]CH in toluene-d8 may reveal an acetylenic hydrogen migration process.
报道了LAl与乙炔、单取代和二取代炔烃以及二炔反应生成铝杂环丙烯LAl[η²-C₂(R¹)(R²)]((L = HC[(CMe)(NAr)]₂, Ar = 2,6-iPr₂C₆H₃);R¹ = R² = H,(1);R¹ = H,R² = Ph,(2);R¹ = R² = Me,(3);R¹ = SiMe₃,R² = C≡CSiMe₃,(4))的反应。化合物1和2是在低温下以等摩尔量的起始原料得到的。通过在-78至-50℃范围内除去过量的C₂H₂来控制C₂H₂的量。化合物4也可以通过LAl[η²-C₂(SiMe₃)₂]与Me₃SiC≡CC≡CSiMe₃的取代反应或通过LAlI₂与钾在Me₃SiC≡CC≡CSiMe₃存在下的还原偶联反应制备。LAl与过量的C₂H₂和PhC≡CH(<1:2)反应分别得到相应的烯基炔基铝化合物LAl(CH=CH₂)(C≡CH)(5)和LAl(CH=CHPh)(C≡CPh)(6)。LAl(η²-C₂Ph₂)与C₂H₂和PhC≡CH反应分别生成LAl(CPh=CHPh)(C≡CH)(7)和LAl(CPh=CHPh)(C≡CPh)(8)。合理地,5(或6)的形成可能通过相应的前体1(或2)进行。基于密度泛函理论(DFT)计算的理论研究表明,Al(I)中心与C≡C单元之间的相互作用几乎不需要活化能。在AlC₂环内,计算得到的Al-C键级约为1,表明存在Al-C σ键,因此AlC₂环上的π电子离域较少。计算得到的Al-η²-C₂键解离能(155 - 82.6 kJ/mol)表明铝杂环丙烯物种具有显著的反应活性。最后,¹H NMR光谱监测的LAl(η²-C₂Ph₂)与PhC≡CH在甲苯-d₈中的反应可能揭示了乙炔氢迁移过程。