Norman Robert G, Scott Marc A
Division of Pulmonary and Critical Care Medicine, School of Medicine, New York University, NY 10016, USA.
Stat Med. 2007 Feb 20;26(4):931-42. doi: 10.1002/sim.2568.
In this paper we demonstrate the adverse effect of serially observed data sequences containing transient events on the calculation of Cohen's kappa as an index of inter-rater agreement in the detection of these events. We develop and use a Monte-Carlo-based permutation technique to produce an empiric distribution of kappa in the presence of serial dependence. We find that the empiric confidence intervals for kappa tend to be wider than parametrically derived intervals and in the case of longer event lengths, are markedly so. We evaluate the effect of number and length of events, and further, describe and evaluate three permutation methods which match specific rating situations. Finally, we apply these techniques to the measurement of inter-rater agreement for sleep disordered breathing events, a transient event identified during nocturnal polysomnography, for which traditionally computed confidence intervals for kappa are incorrect.
在本文中,我们展示了包含瞬态事件的序列观测数据序列对计算科恩kappa系数(作为检测这些事件时评分者间一致性指标)的不利影响。我们开发并使用基于蒙特卡洛的排列技术,以生成存在序列相关性时kappa系数的经验分布。我们发现,kappa系数的经验置信区间往往比参数推导的区间更宽,在事件长度较长的情况下,更是如此。我们评估了事件数量和长度的影响,此外,描述并评估了三种与特定评分情况相匹配的排列方法。最后,我们将这些技术应用于睡眠呼吸障碍事件评分者间一致性的测量,睡眠呼吸障碍事件是夜间多导睡眠图期间识别出的一种瞬态事件,传统计算的kappa系数置信区间是不正确的。