Ahmed Zubair, Suggate Ellen L, Brown Elspeth R, Dent Russell G, Armstrong Stephanie J, Barrett Lee B, Berry Martin, Logan Ann
Molecular Neuroscience Group, Division of Medical Sciences, University of Birmingham, Birmingham, UK.
Brain. 2006 Jun;129(Pt 6):1517-33. doi: 10.1093/brain/awl080. Epub 2006 Apr 13.
When associated with the Nogo receptor (NgR), the transmembrane receptor p75NTR signals growth cone collapse. Arrest of CNS axon growth in vivo is mediated by CNS myelin-derived inhibitory ligands through either an unknown pathway after NgR- and Ca2+-dependent activation of the epidermal growth factor receptor (EGFR), and/or sequential Rho-A/ROCK/LIM-kinase/cofilin phosphorylation leading to actin depolymerization. Paradoxically, rat retinal ganglion cell (RGC) axons regenerate through the CNS myelin-rich transected optic nerve after intravitreal sciatic nerve grafting without inhibitory ligand neutralization. Here, we show that optic nerve regeneration in vivo correlates with Schwann cell-derived factor-induced cleavage of NgR and Nogo-A, and inactivation of p75NTR signalling by the induction of regulated intramembranous proteolysis (RIP) and the release of both extracellular (p75ECD) and intracellular (p75ICD) domains. Hence, Schwann cell-derived factors compromise inhibitory signalling by (i) antagonizing ligand/NgR binding with metalloproteinase-cleaved Nogo-A peptides; (ii) RIP of p75NTR; (iii) competitively blocking NgR/p75NTR clustering with soluble p75ECD; and (iv) consequent reduced downstream EGFR phosphorylation and suppression of Rho-A activation. Moreover, in RGC cultures, exogenous tumour necrosis- converting enzyme (TACE) initiates RIP of p75NTR, reduces EGFR phosphorylation, suppresses activation of Rho-A, cleaves the ECD from both NgR and TROY, and disinhibits neurotrophic factor (NTF) stimulated RGC neurite outgrowth in the presence of CNS myelin. Soluble NgRECD binds all CNS myelin-derived ligands and thus has the potential to act as an inhibitory signalling antagonist, but the role of TROY and its shed ectodomain in growth cone mobility is unknown. siRNA knockdown of p75NTR also inactivates Rho-A and disinhibits NTF-stimulated RGC neurite outgrowth in cultures with added CNS myelin. In all the above experimental paradigms, Schwann cell-derived factor/NTF-induced attenuation of NgR/p75NTR signalling suppresses EGFR activation, thereby potentiating axon growth disinhibition.
当与Nogo受体(NgR)结合时,跨膜受体p75NTR会发出生长锥塌陷的信号。中枢神经系统轴突在体内生长的停滞是由中枢神经系统髓鞘衍生的抑制性配体介导的,其途径要么是在NgR和Ca2+依赖的表皮生长因子受体(EGFR)激活后通过未知途径,和/或通过Rho-A/ROCK/LIM激酶/丝切蛋白的顺序磷酸化导致肌动蛋白解聚。矛盾的是,大鼠视网膜神经节细胞(RGC)轴突在玻璃体内植入坐骨神经后可通过富含中枢神经系统髓鞘的横断视神经再生,而无需中和抑制性配体。在这里,我们表明,体内视神经再生与雪旺细胞衍生因子诱导的NgR和Nogo-A裂解,以及通过诱导调节性膜内蛋白水解(RIP)和释放细胞外(p7ECD)和细胞内(p75ICD)结构域使p75NTR信号失活有关。因此,雪旺细胞衍生因子通过以下方式损害抑制性信号传导:(i)用金属蛋白酶裂解的Nogo-A肽拮抗配体/NgR结合;(ii)p75NTR的RIP;(iii)用可溶性p75ECD竞争性阻断NgR/p75NTR聚集;(iv)随后降低下游EGFR磷酸化并抑制Rho-A激活。此外,在RGC培养物中,外源性肿瘤坏死转化酶(TACE)启动p75NTR的RIP,降低EGFR磷酸化,抑制Rho-A激活,从NgR和TROY上裂解ECD,并在存在中枢神经系统髓鞘的情况下解除神经营养因子(NTF)刺激的RGC神经突生长的抑制。可溶性NgRECD结合所有中枢神经系统髓鞘衍生的配体,因此有潜力作为抑制性信号拮抗剂,但TROY及其脱落的胞外域在生长锥移动性中的作用尚不清楚。p75NTR的siRNA敲低也会使Rho-A失活,并在添加中枢神经系统髓鞘的培养物中解除NTF刺激的RGC神经突生长的抑制。在上述所有实验范式中,雪旺细胞衍生因子/NTF诱导的NgR/p75NTR信号减弱抑制了EGFR激活,从而增强了轴突生长的去抑制作用。