Jurascík M, Guimarães P, Klein J, Domingues L, Teixeira J, Markos J
Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
Biotechnol Bioeng. 2006 Aug 20;94(6):1147-54. doi: 10.1002/bit.20941.
This work presents a multi-route, non-structural kinetic model for interpretation of ethanol fermentation of lactose using a recombinant flocculent Saccharomyces cerevisiae strain expressing both the LAC4 (coding for beta-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces lactis. In this model, the values of different metabolic pathways are calculated applying a modified Monod equation rate in which the growth rate is proportional to the concentration of a key enzyme controlling the single metabolic pathway. In this study, three main metabolic routes for S. cerevisiae are considered: oxidation of lactose, reduction of lactose (producing ethanol), and oxidation of ethanol. The main bioprocess variables determined experimentally were lactose, ethanol, biomass, and dissolved oxygen concentrations. Parameters of the proposed kinetic model were established by fitting the experimental data obtained in a small lab-scale fermentor with the initial lactose concentrations ranging from 5 g/dm3 to 50 g/dm3. A very good agreement between experimental data and simulated profiles of the main variables (lactose, ethanol, biomass, and dissolved oxygen concentrations) was achieved.
本研究提出了一种多途径、非结构化动力学模型,用于解释利用表达乳酸克鲁维酵母LAC4(编码β-半乳糖苷酶)和LAC12(编码乳糖通透酶)基因的重组絮凝酿酒酵母菌株对乳糖进行乙醇发酵的过程。在该模型中,不同代谢途径的值通过应用修正的莫诺德方程速率来计算,其中生长速率与控制单一代谢途径的关键酶浓度成正比。在本研究中,考虑了酿酒酵母的三条主要代谢途径:乳糖氧化、乳糖还原(产生乙醇)和乙醇氧化。实验测定的主要生物过程变量为乳糖、乙醇、生物量和溶解氧浓度。通过将在小型实验室规模发酵罐中获得的实验数据与初始乳糖浓度范围为5 g/dm³至50 g/dm³的数据进行拟合,建立了所提出的动力学模型的参数。实验数据与主要变量(乳糖、乙醇、生物量和溶解氧浓度)的模拟曲线之间取得了非常好的一致性。