Spezia Riccardo, Tournois Guewen, Tortajada Jeanine, Cartailler Thierry, Gaigeot Marie-Pierre
Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR-8587, Université d'Evry-Val-d'Essonne, Boulevard F. Mitterrand, 91025, Evry Cedex, France.
Phys Chem Chem Phys. 2006 May 7;8(17):2040-50. doi: 10.1039/b517688c. Epub 2006 Mar 16.
In this paper, we investigated the reliability of a Car-Parrinello molecular dynamics (CPMD) approach to characterize the binding of Co(II) metal cation to peptide molecules containing cysteine. To this end, we compared pseudo-potentials and DFT plane wave expansion, which are used as key ingredients in the CPMD method, with standard all-electron Gaussian basis set DFT calculations. The simulations presented here are the first attempts to characterize interactions and dynamics of Co(II) metal with the building blocks of phytochelatin peptide molecules. Benchmark calculations are performed on [Co(Cys-H)]+ and [Co(Glutathione-H)]+ complexes, since they are the main fragments of the Co(II)-Cys and Co(II)-glutathione systems found in gas phase electrospray ionisation mass spectrometry (ESI-MS) experiments done in our laboratory. We also present benchmark calculations on the [Co(H2O)6)]2+ cluster with direct comparisons to highly correlated ab initio calculations and experiments. In particular, we investigated the dissociation path of one water molecule from the first hydration shell of Co(II) with CPMD. Overall, our molecular dynamics simulations shed some light on the nature of the Co(II) interaction and reactivity in Co(II)-phytochelatin building block systems related to the biological and environmental activity of the metal, either in the gas or liquid phase.
在本文中,我们研究了一种基于卡-帕里尼罗分子动力学(CPMD)方法来表征钴(II)金属阳离子与含半胱氨酸的肽分子结合的可靠性。为此,我们将CPMD方法中的关键要素——赝势和密度泛函理论(DFT)平面波展开,与标准的全电子高斯基组DFT计算进行了比较。本文所呈现的模拟是首次尝试表征钴(II)金属与植物螯合肽分子构建单元之间的相互作用和动力学。由于[Co(Cys-H)]⁺和[Co(Glutathione-H)]⁺配合物是在我们实验室进行的气相电喷雾电离质谱(ESI-MS)实验中发现的Co(II)-半胱氨酸和Co(II)-谷胱甘肽体系的主要片段,因此对它们进行了基准计算。我们还对[Co(H₂O)₆)]²⁺簇进行了基准计算,并与高度相关的从头算计算和实验进行了直接比较。特别是,我们用CPMD研究了一个水分子从Co(II)的第一水合层解离的路径。总体而言,我们的分子动力学模拟揭示了与金属在气相或液相中的生物和环境活性相关的Co(II)-植物螯合肽构建单元体系中Co(II)相互作用和反应性的本质。