Suppr超能文献

Human vascular smooth muscle cells from diabetic patients are resistant to induced apoptosis due to high Bcl-2 expression.

作者信息

Ruiz Emilio, Gordillo-Moscoso Antonio, Padilla Eugenia, Redondo Santiago, Rodriguez Enrique, Reguillo Fernando, Briones Ana M, van Breemen Cornelis, Okon Elena, Tejerina Teresa

机构信息

Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain.

出版信息

Diabetes. 2006 May;55(5):1243-51. doi: 10.2337/db05-0949.

Abstract

An emerging body of evidence suggests that vascular remodeling in diabetic patients involves a perturbation of the balance between cell proliferation and cell death. Our aim was to study whether arteries and vascular smooth muscle cells (VSMCs) isolated from diabetic patients exhibit resistance to apoptosis induced by several stimuli. Internal mammary arteries (IMAs) were obtained from patients who had undergone coronary artery bypass graft surgery. Arteries from diabetic patients showed increasing levels of Bcl-2 expression in the media layer, measured by immunofluorescence and by Western blotting. Human IMA VSMCs from diabetic patients showed resistance to apoptosis, measured as DNA fragmentation and caspase-3 activation, induced by C-reactive protein (CRP) and other stimuli, such as hydrogen peroxide and 7beta-hydroxycholesterol. The diabetic cells also exhibited overexpression of Bcl-2. Knockdown of Bcl-2 expression with Bcl-2 siRNA in cells from diabetic patients reversed the resistance to induced apoptosis. Consistent with the above, we found that pretreatment of nondiabetic VSMCs with high glucose abolished the degradation of Bcl-2 induced by CRP. Moreover, cell proliferation was increased in diabetic compared with nondiabetic cells. This differential effect was potentiated by glucose. We conclude that the data provide strong evidence that arterial remodeling in diabetic patients results from a combination of decreased apoptosis and increased proliferation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验