Suppr超能文献

用于提取脑瘫患儿矢状面步态模式的聚类分析。

Cluster analysis for the extraction of sagittal gait patterns in children with cerebral palsy.

作者信息

Toro Brigitte, Nester Christopher J, Farren Pauline C

机构信息

Directorate of Physiotherapy, University of Salford, Frederick Road, Salford, M6 6PU, England.

出版信息

Gait Posture. 2007 Feb;25(2):157-65. doi: 10.1016/j.gaitpost.2006.02.004. Epub 2006 Apr 27.

Abstract

Classification of gait disorders would facilitate standardisation of gait management and communication across professional boundaries. In the past, such classification was undertaken using a variety of approaches with often unclear methodology and validation procedures. This study describes the application of hierarchical cluster analysis on sagittal kinematic gait data derived from 56 children with cerebral palsy and 11 neurologically intact children in order to define existing clusters of gait patterns in the children's data. A structured rationale was developed to seek and validate the optimal number of homogenous gait types within the data resulting in 13 different gait clusters that were organised into 'crouch gait type', 'equinus gait type' and 'other gait type'. Applying cluster analysis in combination with visual assessment of gait data and a structured protocol, we have been able to define valid gait groupings.

摘要

步态障碍的分类将有助于步态管理的标准化以及跨专业领域的交流。过去,此类分类采用了多种方法,但其方法和验证程序往往不明确。本研究描述了层次聚类分析在矢状面运动学步态数据中的应用,这些数据来自56名脑瘫儿童和11名神经功能正常的儿童,目的是在儿童数据中定义现有的步态模式集群。我们制定了一个结构化的基本原理,以寻找并验证数据中同质步态类型的最佳数量,从而得出13种不同的步态集群,这些集群被分为“蹲伏步态类型”、“马蹄内翻足步态类型”和“其他步态类型”。通过将聚类分析与步态数据的视觉评估以及结构化方案相结合,我们能够定义有效的步态分组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验