Suppr超能文献

动态躯干运动的稳定性

Stability of dynamic trunk movement.

作者信息

Granata Kevin P, England Scott A

机构信息

Musculoskeletal Biomechanics Laboratories, Department of Engineering Science & Mechanics, School of Biomedical Engineering & Science, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.

出版信息

Spine (Phila Pa 1976). 2006 May 1;31(10):E271-6. doi: 10.1097/01.brs.0000216445.28943.d1.

Abstract

STUDY DESIGN

Nonlinear systems analyses of trunk kinematics were performed to estimate control of dynamic stability during repetitive flexion and extension movements.

OBJECTIVE

Determine whether movement pace and movement direction of dynamic trunk flexion and extension influence control of local dynamic stability.

SUMMARY OF BACKGROUND DATA

Spinal stability has been previously characterized in static, but not in dynamic movements. Biomechanical models make inferences about static spinal stability, but existing analyses provide limited insight into stability of dynamic movement. Stability during dynamic movements can be estimated from Lyapunov analyses of empirical data.

METHODS

There were 20 healthy subjects who performed repetitive trunk flexion and extension movements at 20 and 40 cycles per minute. Maximum Lyapunov exponents describing the expansion of the kinematic state-space were calculated from the measured trunk kinematics to estimate stability of the dynamic system.

RESULTS

The complexity of torso movement dynamics required at least 5 embedded dimensions, which suggests that stability components of lumbar lordosis may be empirically measurable in addition to global stability of trunk dynamics. Repeated trajectories from fast paced movements diverged more quickly than slower movement, indicating that local dynamic stability is limited in fast movements. Movements in the midsagittal plane showed higher multidimensional kinematic divergence than asymmetric movements.

CONCLUSION

Nonlinear dynamic systems analyses were successfully applied to empirically measured data, which were used to characterize the neuromuscular control of stability during repetitive dynamic trunk movements. Movement pace and movement direction influenced the control of spinal stability. These stability assessment techniques are recommended for improved workplace design and the clinical assessment of spinal stability in patients with low back pain.

摘要

研究设计

对躯干运动学进行非线性系统分析,以评估重复屈伸运动过程中动态稳定性的控制情况。

目的

确定动态躯干屈伸的运动速度和运动方向是否会影响局部动态稳定性的控制。

背景数据总结

脊柱稳定性此前已在静态状态下进行了特征描述,但尚未涉及动态运动。生物力学模型对静态脊柱稳定性进行了推断,但现有分析对动态运动稳定性的洞察有限。动态运动期间的稳定性可通过对经验数据的李雅普诺夫分析来估计。

方法

20名健康受试者以每分钟20次和40次的频率进行重复的躯干屈伸运动。根据测量得到的躯干运动学数据计算描述运动状态空间扩展的最大李雅普诺夫指数,以评估动态系统的稳定性。

结果

躯干运动动力学的复杂性至少需要5个嵌入维度,这表明除了躯干动力学的整体稳定性外,腰椎前凸的稳定性成分可能可以通过经验测量得到。快节奏运动的重复轨迹比慢节奏运动发散得更快,这表明快速运动中局部动态稳定性受到限制。矢状面内的运动比不对称运动表现出更高的多维运动发散。

结论

非线性动态系统分析成功应用于经验测量数据,这些数据用于表征重复动态躯干运动期间稳定性的神经肌肉控制。运动速度和运动方向影响脊柱稳定性的控制。建议采用这些稳定性评估技术来改进工作场所设计以及对腰痛患者脊柱稳定性进行临床评估。

相似文献

1
Stability of dynamic trunk movement.
Spine (Phila Pa 1976). 2006 May 1;31(10):E271-6. doi: 10.1097/01.brs.0000216445.28943.d1.
2
Comparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain.
J Biomech. 2014 Apr 11;47(6):1459-64. doi: 10.1016/j.jbiomech.2014.01.033. Epub 2014 Jan 30.
3
The effects of movement speed on kinematic variability and dynamic stability of the trunk in healthy individuals and low back pain patients.
Clin Biomech (Bristol). 2015 Aug;30(7):682-8. doi: 10.1016/j.clinbiomech.2015.05.005. Epub 2015 May 15.
4
Trunk Dynamic Stability Assessment for Individuals With and Without Nonspecific Low Back Pain During Repetitive Movement.
Hum Factors. 2022 Mar;64(2):291-304. doi: 10.1177/0018720820939697. Epub 2020 Jul 28.
5
Precision of estimates of local stability of repetitive trunk movements.
Eur Spine J. 2013 Dec;22(12):2678-85. doi: 10.1007/s00586-013-2797-2. Epub 2013 May 8.
6
Computation of trunk equilibrium and stability in free flexion-extension movements at different velocities.
J Biomech. 2008;41(2):412-21. doi: 10.1016/j.jbiomech.2007.08.010. Epub 2007 Sep 27.
9
Relationships Between Trunk Movement Patterns During Lifting Tasks Compared With Unloaded Extension From a Flexed Posture.
J Manipulative Physiol Ther. 2018 Mar-Apr;41(3):189-198. doi: 10.1016/j.jmpt.2017.09.007.
10
Describing the active region boundary of EMG-assisted biomechanical models of the low back.
Clin Biomech (Bristol). 2012 Jun;27(5):422-7. doi: 10.1016/j.clinbiomech.2011.11.003. Epub 2011 Dec 12.

引用本文的文献

2
Sex-specific trunk movement coordination in participants with low-back pain and asymptomatic controls.
Front Sports Act Living. 2025 Apr 1;7:1524489. doi: 10.3389/fspor.2025.1524489. eCollection 2025.
4
Diaphragm Fatigue Does Not Impact Breathing Mechanics or Function in People with Chronic Low Back Pain.
J Pain Res. 2025 Feb 26;18:963-974. doi: 10.2147/JPR.S496917. eCollection 2025.
6
Modalities of sequential human robot collaboration trigger different modifications of trunk oscillations.
Front Neurorobot. 2023 Jun 22;17:1183164. doi: 10.3389/fnbot.2023.1183164. eCollection 2023.
9
Multi-joint biomechanics during sloped walking in patients with developmental dysplasia of the hip.
Clin Biomech (Bristol). 2021 Apr;84:105335. doi: 10.1016/j.clinbiomech.2021.105335. Epub 2021 Mar 28.
10
Characterizing Local Dynamic Stability of Lumbar Spine Sub-regions During Repetitive Trunk Flexion-Extension Movements.
Front Sports Act Living. 2019 Oct 10;1:48. doi: 10.3389/fspor.2019.00048. eCollection 2019.

本文引用的文献

2
Nonlinear time series analysis of normal and pathological human walking.
Chaos. 2000 Dec;10(4):848-863. doi: 10.1063/1.1324008.
3
Simplifying the complexities of maintaining balance.
IEEE Eng Med Biol Mag. 2003 Mar-Apr;22(2):63-8. doi: 10.1109/memb.2003.1195698.
5
Effect of movement speed on limb segment motions for reaching from a standing position.
Exp Brain Res. 2003 Feb;148(3):377-87. doi: 10.1007/s00221-002-1287-2. Epub 2002 Dec 18.
6
Optimal feedback control as a theory of motor coordination.
Nat Neurosci. 2002 Nov;5(11):1226-35. doi: 10.1038/nn963.
7
Coexistence of stability and mobility in postural control: evidence from postural compensation for respiration.
Exp Brain Res. 2002 Jun;144(3):293-302. doi: 10.1007/s00221-002-1040-x. Epub 2002 Apr 13.
8
Trunk posture and spinal stability.
Clin Biomech (Bristol). 2001 Oct;16(8):650-9. doi: 10.1016/s0268-0033(01)00064-x.
9
Response of trunk muscle coactivation to changes in spinal stability.
J Biomech. 2001 Sep;34(9):1117-23. doi: 10.1016/s0021-9290(01)00081-1.
10
Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain.
Clin Biomech (Bristol). 1996 Jan;11(1):1-15. doi: 10.1016/0268-0033(95)00035-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验