Gilbert C W, Buetow D E
Department of Physiology and Biophysics, University of Illinois, Urbana, Illinois 61801.
Plant Physiol. 1981 Apr;67(4):623-8. doi: 10.1104/pp.67.4.623.
Euglena chloroplast polypeptides are resolved by an adaptation of the two-dimensional gel electrophoretic technique of O'Farrell (1975 J Biol Chem 250: 4007-4021). The present results are compared with those obtained by our earlier two-dimensional gel analyses as well as those obtained by one-dimensional gel analyses. Up to 75 micrograms of Euglena chloroplast polypeptides are resolved on one-dimensional sodium dodecylsulfate linear gradient 7.5 to 15% polyacrylamide gels into 43 stained polypeptide bands compared to only 33 bands resolved on a similar gel containing only 10% polyacrylamide. In contrast, two-dimensional gel electrophoresis (isoelectric focusing for the first dimension, sodium dodecylsulfate gel electrophoresis for the second dimension) further improves the resolution of the chloroplast polypeptides and especially so when a linear gradient gel is used for the second dimension. Delipidation of Euglena chloroplasts with acetone-ether and subsequent solubilization of polypeptides with Triton X-100 followed by sonication are all necessary for successful resolution of chloroplast polypeptides on two-dimensional gels. Up to 300 micrograms of chloroplast polypeptides can be clearly resolved into 56 to 59 stainable spots by the present two-dimensional gel technique when a linear gradient gel is used for the second dimension. Thus, about 30% of the polypeptide bands on a one-dimensional gel are separated into multiple polypeptides on a two-dimensional gel. The use of two-dimensional gels to separate labeled polypeptides with subsequent detection of labeled spots by autoradiography or fluorography again improves the resolution of the chloroplast polypeptides. For example, when (35)S-labeled chloroplast polypeptides are separated by the present two-dimensional gel technique with a linear gradient polyacrylamide gel in the second dimension, autoradiography or fluorography detects over 80 individual polypeptide spots. This is about twice the number resolved by our previous analyses which used a 10% polyacrylamide gel in the second dimension. Polypeptides detected range in molecular weight from about 8.5 to about 145 kilodaltons with apparent isoelectric points from pH 4.5 to 8.0. Fluorography provides rapid detection of labeled polypeptides and is 10 times more sensitive than autoradiography.
利用奥法雷尔(1975年,《生物化学杂志》250卷:4007 - 4021页)二维凝胶电泳技术的改进方法,可分离出眼虫叶绿体多肽。将目前的结果与我们早期二维凝胶分析以及一维凝胶分析所得结果进行比较。在一维十二烷基硫酸钠线性梯度7.5%至15%聚丙烯酰胺凝胶上,高达75微克的眼虫叶绿体多肽可分离为43条染色多肽带,而在仅含10%聚丙烯酰胺的类似凝胶上只能分离出33条带。相比之下,二维凝胶电泳(第一维为等电聚焦,第二维为十二烷基硫酸钠凝胶电泳)进一步提高了叶绿体多肽的分辨率,尤其是当第二维使用线性梯度凝胶时。用丙酮 - 乙醚对眼虫叶绿体进行脱脂处理,随后用 Triton X - 100溶解多肽并进行超声处理,这些都是在二维凝胶上成功分离叶绿体多肽所必需的。当第二维使用线性梯度凝胶时,通过目前的二维凝胶技术,高达300微克的叶绿体多肽可清晰地分离为56至59个可染色斑点。因此,一维凝胶上约30%的多肽带在二维凝胶上被分离为多个多肽。使用二维凝胶分离标记多肽,随后通过放射自显影或荧光自显影检测标记斑点,再次提高了叶绿体多肽的分辨率。例如,当用目前的二维凝胶技术在第二维使用线性梯度聚丙烯酰胺凝胶分离(35)S标记的叶绿体多肽时,放射自显影或荧光自显影可检测到80多个单独的多肽斑点。这大约是我们之前分析结果的两倍,之前的分析在第二维使用的是10%聚丙烯酰胺凝胶。检测到的多肽分子量范围约为8.5至145千道尔顿,表观等电点为pH 4.5至8.0。荧光自显影可快速检测标记多肽,其灵敏度比放射自显影高10倍。