Department of Biochemistry, University of Arizona, Tucson, Arizona 85721.
Plant Physiol. 1981 Jul;68(1):252-5. doi: 10.1104/pp.68.1.252.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO(2). Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O(2) is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO(2) required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO(2), the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.In contrast, incubation of purified ribulose bisphosphate carboxylase with ribulose bisphosphate irreversibly inhibited activation, especially in the absence of CO(2). Addition of the same amount of ribulose bisphosphate to lysed chloroplasts did cause some deactivation of the carboxylase in the extract, but full activation returned when the ribulose bisphosphate was consumed. The ribulose bisphosphate carboxylase in the chloroplast is not irreversibly inhibited by high levels of ribulose bisphosphate.
叶绿体内的核酮糖 1,5-二磷酸被认为可以调节核酮糖二磷酸羧化酶/加氧酶的活性。为了生成高浓度的核酮糖 1,5-二磷酸,将分离的完整菠菜叶绿体在没有 CO2 的情况下进行光照。在这些条件下,如果没有 O2,叶绿体内部可以生成高达 300 纳摩尔/毫克叶绿素的核酮糖 1,5-二磷酸。这相当于 12 毫摩尔核酮糖 1,5-二磷酸,而酶核酮糖 1,5-二磷酸羧化酶在叶绿体基质中为该二磷酸提供了多达 3.0 毫摩尔的结合位点。在光照期间,由于缺乏激活所需的 CO2,核酮糖 1,5-二磷酸羧化酶失活。核酮糖 1,5-二磷酸羧化酶的失活速率不受叶绿体核酮糖 1,5-二磷酸水平的影响。添加 CO2 后,叶绿体中的羧化酶完全重新激活。有趣的是,添加 3-磷酸甘油酸可阻止叶绿体中羧化酶的失活,同时核酮糖 1,5-二磷酸积累。在有光的完整叶绿体中,无法显示羧化酶失活与核酮糖 1,5-二磷酸水平之间的相关性。相比之下,用核酮糖 1,5-二磷酸孵育纯化的核酮糖 1,5-二磷酸羧化酶会不可逆地抑制其激活,尤其是在没有 CO2 的情况下。向裂解的叶绿体中添加相同量的核酮糖 1,5-二磷酸确实会导致提取物中的羧化酶失活一些,但当核酮糖 1,5-二磷酸被消耗时,羧化酶会完全重新激活。叶绿体中的核酮糖 1,5-二磷酸羧化酶不会被高水平的核酮糖 1,5-二磷酸不可逆地抑制。