Suppr超能文献

分段光滑图像的小波域逼近与压缩

Wavelet-domain approximation and compression of piecewise smooth images.

作者信息

Wakin Michael B, Romberg Justin K, Choi Hyeokho, Baraniuk Richard G

机构信息

epartment of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.

出版信息

IEEE Trans Image Process. 2006 May;15(5):1071-87. doi: 10.1109/tip.2005.864175.

Abstract

The wavelet transform provides a sparse representation for smooth images, enabling efficient approximation and compression using techniques such as zerotrees. Unfortunately, this sparsity does not extend to piecewise smooth images, where edge discontinuities separating smooth regions persist along smooth contours. This lack of sparsity hampers the efficiency of wavelet-based approximation and compression. On the class of images containing smooth C2 regions separated by edges along smooth C2 contours, for example, the asymptotic rate-distortion (R-D) performance of zerotree-based wavelet coding is limited to D(R) (< or = 1/R, well below the optimal rate of 1/R2. In this paper, we develop a geometric modeling framework for wavelets that addresses this shortcoming. The framework can be interpreted either as 1) an extension to the "zerotree model" for wavelet coefficients that explicitly accounts for edge structure at fine scales, or as 2) a new atomic representation that synthesizes images using a sparse combination of wavelets and wedgeprints--anisotropic atoms that are adapted to edge singularities. Our approach enables a new type of quadtree pruning for piecewise smooth images, using zerotrees in uniformly smooth regions and wedgeprints in regions containing geometry. Using this framework, we develop a prototype image coder that has near-optimal asymptotic R-D performance D(R) < or = (log R)2 /R2 for piecewise smooth C2/C2 images. In addition, we extend the algorithm to compress natural images, exploring the practical problems that arise and attaining promising results in terms of mean-square error and visual quality.

摘要

小波变换为平滑图像提供了一种稀疏表示,使得能够使用诸如零树等技术进行高效逼近和压缩。不幸的是,这种稀疏性并不适用于分段平滑图像,在这类图像中,分隔平滑区域的边缘不连续性会沿着平滑轮廓持续存在。这种缺乏稀疏性的情况阻碍了基于小波的逼近和压缩的效率。例如,在包含由沿着平滑C2轮廓的边缘分隔的平滑C2区域的图像类别上,基于零树的小波编码的渐近率失真(R-D)性能被限制为D(R)(≤1/R,远低于最优速率1/R2)。在本文中,我们开发了一种针对小波的几何建模框架来解决这一缺点。该框架可以被解释为:1)对小波系数的“零树模型”的扩展,它明确考虑了精细尺度下的边缘结构;或者2)一种新的原子表示,它使用小波和楔形印纹(适应边缘奇点的各向异性原子)的稀疏组合来合成图像。我们的方法为分段平滑图像实现了一种新型的四叉树剪枝,在均匀平滑区域使用零树,在包含几何结构的区域使用楔形印纹。使用这个框架,我们开发了一个原型图像编码器,对于分段平滑的C2/C2图像,它具有接近最优的渐近R-D性能D(R)≤(log R)2 /R2。此外,我们将该算法扩展到压缩自然图像,探讨了出现的实际问题,并在均方误差和视觉质量方面取得了有前景的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验