Suppr超能文献

气相中CH(3)O(2)(*) + HO(2)(*) --> CH(3)O(2)H + O(2)反应的机理研究。氢键双自由基复合物形成的计算证据。

Mechanistic study of the CH(3)O(2)(*) + HO(2)(*) --> CH(3)O(2)H + O(2) reaction in the gas phase. computational evidence for the formation of a hydrogen-bonded diradical complex.

作者信息

Anglada Josep M, Olivella Santiago, Solé Albert

机构信息

Institut d'Investigacions Químiques i Ambientals de Barcelona, CSIC, Jordi Girona 18, 08034-Barcelona, Catalonia, Spain.

出版信息

J Phys Chem A. 2006 May 11;110(18):6073-82. doi: 10.1021/jp060798u.

Abstract

In an attempt to understand the mechanism of the reaction of alkylperoxy radicals with hydroperoxy radical, a key reaction in both atmospheric and combustion chemistry, the singlet and triplet potential energy surfaces (PESs) for the gas-phase reaction between CH(3)O(2)() and HO(2)() leading to the formation of CH(3)OOH and O(2) have been investigated by means of quantum-mechanical electronic structure methods (CASSCF and CASPT2). In addition, standard transition state theory calculations have been carried out with the main purpose of a qualitative description of the strong negative temperature dependence observed for this reaction. All the pathways on both the singlet and triplet PESs consist of a reversible first step involving the barrierless formation of a hydrogen-bonded pre-reactive complex, followed by the irreversible formation of products. This complex is a diradical species where the two unpaired electrons are not used for bonding and is lying about 5 kcal/mol below the energy of the reactants at 0 K. The lowest energy reaction pathway occurs on the triplet PES and involves the direct H-atom transfer from HO(2) to CH(3)O(2) in the diradical complex through a transition structure lying 3.8 kcal/mol below the energy of the reactants at 0 K. Contradicting the currently accepted interpretation of the reaction mechanism, the observed strong negative temperature dependence of the rate constant is due to the formation of the hydrogen-bonded diradical complex rather than a short-lived tetraoxide intermediate CH(3)OOOOH.

摘要

为了理解烷基过氧自由基与氢过氧自由基反应的机理(这是大气化学和燃烧化学中的一个关键反应),通过量子力学电子结构方法(CASSCF和CASPT2)研究了CH(3)O(2)()与HO(2)()气相反应生成CH(3)OOH和O(2)的单重态和三重态势能面(PES)。此外,进行了标准过渡态理论计算,主要目的是定性描述该反应所观察到的强烈负温度依赖性。单重态和三重态势能面上的所有反应途径都包括一个可逆的第一步,即无势垒形成氢键预反应复合物,随后是产物的不可逆形成。该复合物是一种双自由基物种,其中两个未成对电子不参与成键,在0 K时其能量比反应物能量低约5 kcal/mol。最低能量反应途径发生在三重态势能面上,涉及双自由基复合物中氢原子从HO(2)直接转移到CH(3)O(2),通过一个过渡结构,其能量在0 K时比反应物能量低3.8 kcal/mol。与目前对反应机理的公认解释相反,观察到的速率常数强烈负温度依赖性是由于氢键双自由基复合物的形成,而不是短寿命的四氧化物中间体CH(3)OOOOH。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验