Zhelev Zhivko, Ohba Hideki, Bakalova Rumiana
On-Site Sensing and Diagnosis Research Laboratory, National Institute of Advanced Industrial Science and Technology, AIST-Kyushu, 807-1 Shuku-machi, Tosu 841-0052, Japan.
J Am Chem Soc. 2006 May 17;128(19):6324-5. doi: 10.1021/ja061137d.
The present study describes a stabilization of single quantum dot (QD) micelles by hydrophobic silica precursors and an extension of the silica layer to form a silica shell around the micelle. The obtained product consists of up to 92% of single nanocrystals (CdSe, CdSe/ZnS, or CdSe/ZnSe/ZnS quantum dots) in the silica micelles, coated with silica shell. The thickness of silica shell could vary, starting from 3 to 4 nm. Increasing the shell thickness increases the photoluminescent characteristics of QDs in aqueous solution. The silica-shelled single CdSe/ZnS QD micelles possess a high quantum yield in aqueous solution, a controlled small size, sharp photoluminescence spectra (fwhm approximately 30 nm), an absence of aggregation, and a high transparency. The presence of a hydrophobic layer between the QD and silica shell ensures an incorporation of other hydrophobic molecules (with interesting properties) in the close proximity of nanocrystal. Thus, it is possible to combine the characteristics of hybrid material with the priority of small size. The nanoparticles are amino functionalized and ready for conjugation. A comparatively good biocompatibility is demonstrated. The nanoparticles show ability for intracellular delivery and are noncytotoxic during long-term incubation with viable cells in the absence of light exposure, which makes them appropriate for cell tracing and drug delivery.
本研究描述了通过疏水二氧化硅前驱体对单量子点(QD)胶束进行稳定化处理,并扩展二氧化硅层以在胶束周围形成二氧化硅壳。所获得的产物在二氧化硅胶束中包含高达92%的单纳米晶体(CdSe、CdSe/ZnS或CdSe/ZnSe/ZnS量子点),并包覆有二氧化硅壳。二氧化硅壳的厚度可以变化,起始厚度为3至4纳米。增加壳厚度可提高量子点在水溶液中的光致发光特性。具有二氧化硅壳的单个CdSe/ZnS量子点胶束在水溶液中具有高量子产率、可控的小尺寸、尖锐的光致发光光谱(半高宽约30纳米)、无聚集现象以及高透明度。量子点与二氧化硅壳之间存在的疏水层确保了其他具有有趣特性的疏水分子在纳米晶体附近的掺入。因此,有可能将杂化材料的特性与小尺寸的优势相结合。纳米颗粒经过氨基功能化处理,可用于共轭。已证明其具有相对良好的生物相容性。纳米颗粒显示出细胞内递送能力,并且在无光暴露的情况下与活细胞长期孵育期间无细胞毒性,这使其适用于细胞追踪和药物递送。