Suppr超能文献

采采蝇Glossina pallidipes(双翅目:舌蝇科)热耐受性和水分流失的表型可塑性及地理变异:对分布模型的影响

Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling.

作者信息

Terblanche John S, Klok C Jaco, Krafsur Elliot S, Chown Steven L

机构信息

Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.

出版信息

Am J Trop Med Hyg. 2006 May;74(5):786-94.

Abstract

Using the tsetse, Glossina pallidipes, we show that physiologic plasticity (resulting from temperature acclimation) accounts for among-population variation in thermal tolerance and water loss rates. Critical thermal minimum (CT(Min)) was highly variable among populations, seasons, and acclimation treatments, and the full range of variation was 9.3 degrees C (maximum value = 3.1 x minimum). Water loss rate showed similar variation (max = 3.7 x min). In contrast, critical thermal maxima (CT(Max)) varied least among populations, seasons, and acclimation treatments, and the full range of variation was only approximately 1 degree C. Most of the variation among the four field populations could be accounted for by phenotypic plasticity, which in the case of CT(Min), develops within 5 days of temperature exposure and is lost rapidly on return to the original conditions. Limited variation in CT(Max) supports bioclimatic models that suggest tsetse are likely to show range contraction with warming from climate change.

摘要

利用采采蝇(Glossina pallidipes),我们发现生理可塑性(由温度驯化导致)可解释种群间热耐受性和失水率的差异。最低临界温度(CT(Min))在种群、季节和驯化处理间差异很大,其变化范围达9.3摄氏度(最大值 = 3.1×最小值)。失水率也呈现类似的变化(最大值 = 3.7×最小值)。相比之下,最高临界温度(CT(Max))在种群、季节和驯化处理间变化最小,其变化范围仅约1摄氏度。四个野外种群间的大部分差异可由表型可塑性来解释,就CT(Min)而言,它在温度暴露5天内形成,恢复到原始条件后会迅速消失。CT(Max)的有限变化支持了生物气候模型,该模型表明采采蝇可能会因气候变化导致的变暖而出现分布范围收缩。

相似文献

3
Microgeographical breeding structure of the tsetse fly, Glossina pallidipes in south-western Kenya.
Med Vet Entomol. 2006 Mar;20(1):138-49. doi: 10.1111/j.1365-2915.2006.00609.x.
4
How plastic are upper thermal limits? A comparative study in tsetse (family: Glossinidae) and wider Diptera.
J Therm Biol. 2023 Dec;118:103745. doi: 10.1016/j.jtherbio.2023.103745. Epub 2023 Oct 30.
6
Phylogeography and population structure of the tsetse fly Glossina pallidipes in Kenya and the Serengeti ecosystem.
PLoS Negl Trop Dis. 2020 Feb 24;14(2):e0007855. doi: 10.1371/journal.pntd.0007855. eCollection 2020 Feb.
7
Temporal genetic differentiation in Glossina pallidipes tsetse fly populations in Kenya.
Parasit Vectors. 2017 Oct 10;10(1):471. doi: 10.1186/s13071-017-2415-y.

引用本文的文献

3
Variation in the thermal plasticity of avian embryos is produced by the developmental environment, not genes.
Proc Biol Sci. 2024 Oct;291(2032):20241892. doi: 10.1098/rspb.2024.1892. Epub 2024 Oct 9.
7
Meta-analysis reveals weak but pervasive plasticity in insect thermal limits.
Nat Commun. 2022 Sep 8;13(1):5292. doi: 10.1038/s41467-022-32953-2.
9
Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species.
Ecol Evol. 2021 May 22;11(12):8332-8346. doi: 10.1002/ece3.7663. eCollection 2021 Jun.
10
Body mass and sex, not local climate, drive differences in chill coma recovery times in common garden reared bumble bees.
J Comp Physiol B. 2021 Sep;191(5):843-854. doi: 10.1007/s00360-021-01385-7. Epub 2021 Jun 25.

本文引用的文献

1
Species borders: ecological and evolutionary perspectives.
Trends Ecol Evol. 1994 Jun;9(6):223-7. doi: 10.1016/0169-5347(94)90248-8.
2
4
The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae).
J Insect Physiol. 2005 Sep;51(9):1013-23. doi: 10.1016/j.jinsphys.2005.04.016. Epub 2005 Jun 13.
5
Biophysics, physiological ecology, and climate change: does mechanism matter?
Annu Rev Physiol. 2005;67:177-201. doi: 10.1146/annurev.physiol.67.040403.105027.
6
Climate change and the recent emergence of bluetongue in Europe.
Nat Rev Microbiol. 2005 Feb;3(2):171-81. doi: 10.1038/nrmicro1090.
8
Adaptation varies through space and time in a coevolving host-parasitoid interaction.
Nature. 2004 Oct 14;431(7010):841-4. doi: 10.1038/nature02906.
9
Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi).
J Insect Physiol. 2004 Jul;50(7):637-45. doi: 10.1016/j.jinsphys.2004.04.010.
10
Upper thermal tolerance and oxygen limitation in terrestrial arthropods.
J Exp Biol. 2004 Jun;207(Pt 13):2361-70. doi: 10.1242/jeb.01023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验