Champouret Yohan D M, Maréchal Jean-Didier, Dadhiwala Ishaq, Fawcett John, Palmer Donna, Singh Kuldip, Solan Gregory A
Department of Chemistry, University of Leicester, University Road, Leicester, UK LE1 7RH.
Dalton Trans. 2006 May 21(19):2350-61. doi: 10.1039/b516083a. Epub 2006 Feb 22.
The bis(imino)terpyridine ligands, 6,6''-{(2,6-i-Pr2C6H3)N=CR}2-2,2':6',2''-C15H9N3 (R = H L1, Me L2), have been prepared in high yield from the condensation reaction of the corresponding carbonyl compound with two equivalents of 2,6-diisopropylaniline. The molecular structure of L2 reveals a transoid relationship between the imino and pyridyl nitrogen groups throughout the ligand framework. Treatment of aldimine-containing L1 with one equivalent or an excess of MX2 in n-BuOH at 110 degrees C gives the mononuclear five-coordinate complexes, [(L1)MX2] (M = Fe, X = Cl 1a; M = Ni, X = Br 1b; M = Zn, X = Cl 1c), in which the metal centre occupies the terpyridine cavity and the imino groups pendant. Conversely, reaction of ketimine-containing L2 with excess MX2 in n-BuOH at 110 degrees C affords the binuclear complexes, [(L2)M2X4] (M = Fe, X = Cl 3a; M = Ni, X = Br 3b; M = Zn, X = Cl 3c), in which one metal centre occupies a bidentate pyridylimine cavity while the other a tridentate bipyridylimine cavity. 1H NMR studies on diamagnetic 3c suggests a fluxional process is operational at ambient temperature in which the central pyridine ring undergoes an exchange between metal coordination. Under less forcing conditions (room temperature in dichloromethane), the monometallic counterpart of 1b [(L2)NiBr2] (2b) has been isolated which can be converted to 3b by addition of one equivalent of (DME)NiBr2 (DME = 1,2-dimethoxyethane) in n-BuOH at 110 degrees C. Quantum mechanical calculations (DFT) have been performed on [(L1)ZnCl2] and [(L2)ZnCl2] for different monometallic conformations and show that 1a is the energetically preferred structure for L1 while there is evidence for dynamic behaviour in L2-containing species leading to bimetallic formation. Single-crystal X-ray diffraction studies have been performed on 1a, 1b, 1c, 2b, 3a, 3b(H2O) and 3c.
双(亚氨基)三联吡啶配体6,6''-{(2,6-二异丙基苯基)N=CR}2-2,2':6',2''-三联吡啶(R = H 为L1,R = Me 为L2),通过相应羰基化合物与两当量的2,6-二异丙基苯胺的缩合反应以高产率制备。L2的分子结构表明,在整个配体骨架中,亚氨基和吡啶基氮原子之间存在反式关系。在110℃下,将含醛亚胺的L1与一当量或过量的MX2在正丁醇中反应,得到单核五配位配合物[(L1)MX2](M = Fe,X = Cl 为1a;M = Ni,X = Br 为1b;M = Zn,X = Cl 为1c),其中金属中心占据三联吡啶空腔,亚氨基悬垂。相反地,在110℃下,将含酮亚胺的L2与过量的MX2在正丁醇中反应,得到双核配合物[(L2)M2X4](M = Fe,X = Cl 为3a;M = Ni,X = Br 为3b;M = Zn,X = Cl 为3c),其中一个金属中心占据双齿吡啶基亚胺空腔,另一个占据三齿联吡啶基亚胺空腔。对抗磁性的3c进行的1H NMR研究表明,在室温下存在一个动态过程,其中中心吡啶环在金属配位之间进行交换。在较温和的条件下(二氯甲烷中的室温),分离出了1b的单金属对应物[(L2)NiBr2](2b),通过在110℃下在正丁醇中加入一当量的(DME)NiBr2(DME = 1,2-二甲氧基乙烷),可将其转化为3b。已针对[(L1)ZnCl2]和[(L2)ZnCl2]的不同单金属构象进行了量子力学计算(DFT),结果表明1a是L1在能量上更优的结构,而有证据表明含L2的物种中存在动态行为,导致双金属形成。已对1a、1b、1c、2b、3a、3b(H2O)和3c进行了单晶X射线衍射研究。