Beaudoin Deborah Langrill, Roth Bradley J
Department of Physics, Oakland University, Rochester, Michigan 48309, USA.
Pacing Clin Electrophysiol. 2006 May;29(5):496-501. doi: 10.1111/j.1540-8159.2006.00382.x.
Break excitation has been hypothesized as a mechanism for the initiation of reentry in cardiac tissue. One way break excitation can occur is by virtual electrodes formed due to a curving fiber geometry. In this article, we are concerned with the relationship between the peak gradient of fiber curvature and the threshold for break stimulation and the initiation of reentry.
We calculate the maximum gradient of fiber curvature for different scales of fiber geometry in a constant tissue size (20x20 mm), and also examine the mechanisms by which reentry initiation fails.
For small peak gradients, reentry fails because break excitation does not occur. For larger peak gradients, reentry fails because break excitation fails to develop into full-scale reentry. For strong stimuli above the upper limit of vulnerability, reentry fails because the break excitation propagates through the hyperpolarized region and then encounters refractory tissue, causing the wave front to die.
折返激动被认为是心脏组织中折返形成的一种机制。折返激动发生的一种方式是由于纤维几何形状弯曲形成虚拟电极。在本文中,我们关注纤维曲率的峰值梯度与折返刺激阈值及折返起始之间的关系。
我们在恒定组织大小(20×20毫米)下计算不同尺度纤维几何形状的纤维曲率最大梯度,并研究折返起始失败的机制。
对于较小的峰值梯度,折返失败是因为未发生折返激动。对于较大的峰值梯度,折返失败是因为折返激动未能发展为全尺度折返。对于高于易损性上限的强刺激,折返失败是因为折返激动传播通过超极化区域,然后遇到不应期组织,导致波前消失。