Suppr超能文献

血管紧张素II 1型受体反向激动剂的分子机制

Molecular mechanism underlying inverse agonist of angiotensin II type 1 receptor.

作者信息

Miura Shin-ichiro, Fujino Masahiro, Hanzawa Hiroyuki, Kiya Yoshihiro, Imaizumi Satoshi, Matsuo Yoshino, Tomita Sayo, Uehara Yoshinari, Karnik Sadashiva S, Yanagisawa Hiroaki, Koike Hiroyuki, Komuro Issei, Saku Keijiro

机构信息

Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan.

出版信息

J Biol Chem. 2006 Jul 14;281(28):19288-95. doi: 10.1074/jbc.M602144200. Epub 2006 May 10.

Abstract

To delineate the molecular mechanism underlying the inverse agonist activity of olmesartan, a potent angiotensin II type 1 (AT1) receptor antagonist, we performed binding affinity studies and an inositol phosphate production assay. Binding affinity of olmesartan and its related compounds to wild-type and mutant AT1 receptors demonstrated that interactions between olmesartan and Tyr113, Lys199, His256, and Gln257 in the AT1 receptor were important. The inositol phosphate production assay of olmesartan and related compounds using mutant receptors indicated that the inverse agonist activity required two interactions, that between the hydroxyl group of olmesartan and Tyr113 in the receptor and that between the carboxyl group of olmesartan and Lys199 and His256 in the receptor. Gln257 was found to be important for the interaction with olmesartan but not for the inverse agonist activity. Based on these results, we constructed a model for the interaction between olmesartan and the AT1 receptor. Although the activation of G protein-coupled receptors is initiated by anti-clockwise rotation of transmembrane (TM) III and TM VI followed by changes in the conformation of the receptor, in this model, cooperative interactions between the hydroxyl group and Tyr113 in TM III and between the carboxyl group and His256 in TM VI were essential for the potent inverse agonist activity of olmesartan. We speculate that the specific interaction of olmesartan with these two TMs is essential for stabilizing the AT1 receptor in an inactive conformation. A better understanding of the molecular mechanisms of the inverse agonism could be useful for the development of new G protein-coupled receptor antagonists with inverse agonist activity.

摘要

为了阐明强效血管紧张素II 1型(AT1)受体拮抗剂奥美沙坦反向激动剂活性的分子机制,我们进行了结合亲和力研究和肌醇磷酸生成测定。奥美沙坦及其相关化合物与野生型和突变型AT1受体的结合亲和力表明,奥美沙坦与AT1受体中的Tyr113、Lys199、His256和Gln257之间的相互作用很重要。使用突变受体对奥美沙坦及相关化合物进行的肌醇磷酸生成测定表明,反向激动剂活性需要两种相互作用,即奥美沙坦的羟基与受体中的Tyr113之间的相互作用以及奥美沙坦的羧基与受体中的Lys199和His256之间的相互作用。发现Gln257对与奥美沙坦的相互作用很重要,但对反向激动剂活性不重要。基于这些结果,我们构建了奥美沙坦与AT1受体相互作用的模型。尽管G蛋白偶联受体的激活是由跨膜(TM)III和TM VI的逆时针旋转引发,随后受体构象发生变化,但在该模型中,TM III中的羟基与Tyr113之间以及TM VI中的羧基与His256之间的协同相互作用对于奥美沙坦的强效反向激动剂活性至关重要。我们推测,奥美沙坦与这两个跨膜结构域的特异性相互作用对于将AT1受体稳定在无活性构象中至关重要。更好地理解反向激动作用的分子机制可能有助于开发具有反向激动剂活性的新型G蛋白偶联受体拮抗剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验