Suppr超能文献

最小数据集诊断在描述急性护理机构近期住院情况方面的准确性。

The accuracy of Minimum Data Set diagnoses in describing recent hospitalization at acute care facilities.

作者信息

Del Rio Richard A, Goldman Myla, Kapella B K, Sulit Loreto, Murray Patrick K

机构信息

Division of Gastroenterology, University Hospitals of Cleveland/Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.

出版信息

J Am Med Dir Assoc. 2006 May;7(4):212-8. doi: 10.1016/j.jamda.2005.12.007. Epub 2006 Mar 3.

Abstract

OBJECTIVES

The Minimum Data Set (MDS) is the resident assessment instrument used to guide clinical care, reimbursement, and assess quality in long-term care facilities. This database has been used in many studies, although the accuracy of many data elements remains unknown. This study evaluated the accuracy of the MDS diagnosis variables with respect to the diagnoses for recent hospitalization from Medicare claims data.

DESIGN

Retrospective cohort study.

SETTING

945 skilled nursing facilities in Ohio.

PARTICIPANTS

17,294 residents admitted from an acute care facility during 2000.

MEASUREMENTS

Eleven diagnoses listed in the MDS were compared with Medicare hospital discharge claims. Specifically, each MDS diagnosis was compared to the primary diagnosis, the list of secondary diagnoses, and the Diagnosis Related Group (DRG).

RESULTS

Claims diagnoses were listed in the MDS with an average frequency of 79% (range: 31%-94%) for the primary diagnosis, 66% (range: 33%-90%) for any diagnosis, and 71% (range: 31%-94%) for the DRG. MDS diagnoses were listed as the primary diagnosis, any diagnosis, and DRG with an average frequency of 20% (range: 6%-81%), 62% (range: 41%-86%), and 19% (range: 7%-84%), respectively, with only hip fracture listed more than 80% of the time.

CONCLUSION

The sensitivity of the MDS for listing diagnoses from recent hospitalization appears good for most diagnoses. However, except for hip fracture, the MDS has poor predictive value with regard to the primary reason for the preceding hospitalization; this may have implications for resident care planning and the utility of this database in long-term care research.

摘要

目的

最小数据集(MDS)是用于指导长期护理机构临床护理、报销及评估质量的居民评估工具。该数据库已在多项研究中使用,尽管许多数据元素的准确性仍未知。本研究根据医疗保险理赔数据评估了MDS诊断变量相对于近期住院诊断的准确性。

设计

回顾性队列研究。

地点

俄亥俄州的945家专业护理机构。

参与者

2000年期间从急性护理机构收治的17294名居民。

测量

将MDS中列出的11种诊断与医疗保险出院理赔进行比较。具体而言,将每个MDS诊断与主要诊断、次要诊断列表及诊断相关组(DRG)进行比较。

结果

理赔诊断在MDS中的列出频率为,主要诊断平均为79%(范围:31%-94%),任何诊断为66%(范围:33%-90%),DRG为71%(范围:31%-94%)。MDS诊断被列为主要诊断、任何诊断及DRG的平均频率分别为20%(范围:6%-81%)、62%(范围:41%-86%)和19%(范围:7%-84%),只有髋部骨折的列出频率超过80%。

结论

MDS列出近期住院诊断的敏感性对大多数诊断而言似乎良好。然而,除髋部骨折外,MDS在前次住院主要原因方面的预测价值较差;这可能对居民护理规划及该数据库在长期护理研究中的效用产生影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验