Lam Justine L, Okochi Hideaki, Huang Yong, Benet Leslie Z
Professor, Department of Biopharmaceutical Sciences, University of California San Francisco, 533 Parnassus, Room U-68, San Francisco, CA 94143-0446, USA.
Drug Metab Dispos. 2006 Aug;34(8):1336-44. doi: 10.1124/dmd.106.009258. Epub 2006 May 12.
The effects of hepatic uptake and efflux transporters on erythromycin (ERY) disposition and metabolism were examined by comparing results from rat hepatic microsomes, freshly isolated hepatocytes, and in vivo studies. Uptake studies carried out in freshly isolated rat hepatocytes showed that ERY and its metabolite (N-demethyl-ERY) are substrates of Oatp1a4 and Oatp1b2. Whereas rifampin and GG918 [GF120918: N-{4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-phenyl}-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamine] exerted minimal effects on metabolism in microsomes, rifampin (2.5 microM) and GG918 (0.5 microM) significantly decreased and increased ERY metabolism in hepatocytes, respectively. Concentration-time course studies further demonstrated that, compared with the intracellular N-demethyl-ERY control area under the curve (AUC) (0.795 +/- 0.057 microM . min), a decreased AUC (0.513 +/- 0.028 microM . min, p < 0.005) was observed when ERY was coincubated with rifampin, and an increased AUC (2.14 +/- 0.21 microM . min, p < 0.05) was found when GG918 was present. The results of the i.v. bolus studies showed that, compared with the ERY clearance of the controls (47.2 +/- 12.5 ml/min/kg for the rifampin group and 42.1 +/- 5.7 for the GG918 group), a decreased blood clearance, 29.8 +/- 6.1 ml/min/kg (p < 0.05) and 21.7 +/- 9.0 ml/min/kg (p < 0.01), was observed when rifampin or GG918, respectively, was coadministered. When either inhibitor was codosed with ERY, volume of distribution at steady state was unchanged, but t1/2 and mean residence time significantly increased compared with the controls. Hepatic uptake and efflux transporters modulate intracellular concentrations of ERY, thereby affecting metabolism. The interplay of transporters and enzymes must be considered in evaluating potential drug-drug interactions.
通过比较大鼠肝微粒体、新鲜分离的肝细胞及体内研究的结果,考察了肝脏摄取和外流转运体对红霉素(ERY)处置和代谢的影响。在新鲜分离的大鼠肝细胞中进行的摄取研究表明,ERY及其代谢物(N-去甲基-ERY)是Oatp1a4和Oatp1b2的底物。利福平与GG918 [GF120918:N-{4-[2-(1,2,3,4-四氢-6,7-二甲氧基-2-异喹啉基)-乙基]-苯基}-9,10-二氢-5-甲氧基-9-氧代-4-吖啶甲酰胺] 对微粒体中的代谢影响极小,而利福平(2.5 μM)和GG918(0.5 μM)分别显著降低和增加了肝细胞中的ERY代谢。浓度-时间过程研究进一步表明,与细胞内N-去甲基-ERY曲线下面积(AUC)(0.795±0.057 μM·min)相比,ERY与利福平共同孵育时观察到AUC降低(0.513±0.028 μM·min,p<0.005),而存在GG918时AUC增加(2.14±0.21 μM·min,p<0.05)。静脉推注研究结果表明,与对照组的ERY清除率(利福平组为47.2±12.5 ml/min/kg,GG918组为42.1±5.7)相比,分别联合给予利福平或GG918时,血液清除率降低,分别为29.8± 6.1 ml/min/kg(p<0.05)和21.7±9.0 ml/min/kg(p<0.01)。当任一抑制剂与ERY合用时,稳态分布容积不变,但与对照组相比,t1/2和平均驻留时间显著延长。肝脏摄取和外流转运体调节ERY的细胞内浓度,从而影响代谢。在评估潜在的药物-药物相互作用时,必须考虑转运体与酶之间相互作用。