Suppr超能文献

Enrichment of fusobacteria from the rumen that can utilize lysine as an energy source for growth.

作者信息

Russell James B

机构信息

Agricultural Research Service, USDA, Ithaca, NY 14853, USA.

出版信息

Anaerobe. 2005 Jun;11(3):177-84. doi: 10.1016/j.anaerobe.2005.01.001. Epub 2005 Feb 16.

Abstract

Ruminal lysine degradation is a wasteful process that deprives the animal of an essential amino acid. Mixed ruminal bacteria did not deaminate lysine (50 mM) at a rapid rate, but lysine degrading bacteria could be enriched if Trypticase (5 mg/mL) was also added. Lysine degrading isolates produced acetate, butyrate and ammonia, were non-motile, stained Gram-negative and could also utilize lactate, glucose, maltose or galactose as an energy source for growth. Lactate was converted to acetate and propionate, and 16S rDNA indicated that their closest relatives were Fusobacterium necrophorum. Growing cultures produced ammonia at rates as high as 2400 nmol/mg protein/mL/min. Washed cell suspensions took up (14)C lysine (3 microM) at an initial rate of 6 nmol/mg protein/min, and glucose addition did not affect the transport. Cells washed aerobically had the same transport rate as those handled anaerobically, but only if the transport buffer contained sodium. The affinity constant for sodium was 8 mM, and sodium could not be replaced by lithium. Cells treated with the sodium/proton antiporter, monensin (5 microM), did not take up lysine, but a protonophore that inhibited growth (tetrachlorosalicylanilide, 10 microM) had no effect. An artificial membrane potential created by potassium diffusion did not increase the rate of lysine transport, and an Eadie-Hofstee plot indicated the transport rate was directly proportional to the lysine concentration. Decreasing the pH from 6.7 to 5.5 caused an 85% decrease in the rate of lysine transport. The addition of F. necrophorum JB2 (130 microg protein/mL) to mixed ruminal bacteria increased lysine degradation 10-fold, but only if the pH was 6.7 and monensin was not present. Further work will be needed to see if dietary lysine enriches fusobacteria in vivo.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验