Suppr超能文献

中试规模序批式反应器的在线自适应与非线性过程监测

On-line adaptive and nonlinear process monitoring of a pilot-scale sequencing batch reactor.

作者信息

Yoo Chang Kyoo, Lee In-Beum, Vanrolleghem Peter A

机构信息

BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure Links 653, B-9000, Gent, Belgium.

出版信息

Environ Monit Assess. 2006 Aug;119(1-3):349-66. doi: 10.1007/s10661-005-9030-7. Epub 2006 May 24.

Abstract

This article describes the application of on-line nonlinear monitoring of a sequencing batch reactor (SBR). Three-way batch data of SBR are unfolded batch-wisely, and then a adaptive and nonlinear multivariate monitoring method is used to capture the nonlinear characteristics of normal batches. The approach is successfully applied to an 80 L SBR for biological wastewater treatment, where the SBR poses an interesting challenge in view of process monitoring since it is characterized by nonstationary, batchwise, multistage, and nonlinear dynamics. In on-line batch monitoring, the developed adaptive and nonlinear process monitoring method can effectively capture the nonlinear relationship among process variables of a biological process in a SBR. The results of this pilot-scale SBR monitoring system using simple on-line measurements clearly demonstrated that the adaptive and nonlinear monitoring technique showed lower false alarm rate and physically meaningful, that is, robust monitoring results.

摘要

本文介绍了序批式反应器(SBR)在线非线性监测的应用。SBR的三向批次数据按批次展开,然后采用自适应非线性多元监测方法来捕捉正常批次的非线性特征。该方法成功应用于处理生物废水的80升SBR,鉴于其具有非平稳、分批、多阶段和非线性动力学的特点,SBR在过程监测方面提出了有趣的挑战。在在线批次监测中,所开发的自适应非线性过程监测方法能够有效捕捉SBR中生物过程的过程变量之间的非线性关系。使用简单在线测量的该中试规模SBR监测系统的结果清楚地表明,自适应非线性监测技术显示出较低的误报率且具有实际意义,即监测结果稳健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验