Dodds Peter N, Lawrence Gregory J, Catanzariti Ann-Maree, Teh Trazel, Wang Ching-I A, Ayliffe Michael A, Kobe Bostjan, Ellis Jeffrey G
Commonwealth Scientific and Industrial Research Organization Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93. doi: 10.1073/pnas.0602577103. Epub 2006 May 26.
Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrL567 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvrL567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.
植物抗病蛋白(R蛋白)通过检测其宿主蛋白靶标的变化间接识别相应的病原体无毒(Avr)蛋白,或通过R-Avr蛋白直接相互作用来识别。尽管间接识别会对Avr效应子功能施加选择压力,但通过直接相互作用识别的病原体效应分子可能通过序列多样化而非功能丧失来克服抗性。在这里,我们表明亚麻锈菌的AvrL567基因(其产物可被亚麻的L5、L6和L7 R蛋白识别)具有高度多样性,从六个锈菌菌株中鉴定出12个序列变体。源自Avr等位基因的七个AvrL567变体在含有相应抗性基因(R基因)的亚麻植物中表达时会诱导坏死反应,而来自avr等位基因的五个变体则不会。AvrL567变体之间识别特异性的差异以及作用于这些基因的多样化选择的证据表明,它们参与了与相应亚麻R基因的基因特异性军备竞赛。酵母双杂交试验表明,识别是基于R-Avr蛋白直接相互作用,并概括了在植物中观察到的相互作用特异性。对大肠杆菌产生的AvrL567蛋白的生化分析表明,逃避识别的变体仍然保持保守的结构和稳定性,这表明氨基酸序列差异直接影响R-Avr蛋白相互作用。我们认为,在相应的R和Avr基因座处与高遗传多样性相关的直接识别代表了植物-病原体共同进化的另一种结果,不同于与功能性和非功能性R和Avr基因的简单平衡多态性相关的间接识别。