Suppr超能文献

Simultaneous detection of L-glutamate and nitric oxide from adherently growing cells at known distance using disk shaped dual electrodes.

作者信息

Isik Sonnur, Castillo Jaime, Blöchl Andrea, Csöregi Elisabeth, Schuhmann Wolfgang

机构信息

Anal. Chem.-Elektroanalytik and Sensorik, Universitätsstr. 150, D-44780 Bochum, Germany.

出版信息

Bioelectrochemistry. 2007 Jan;70(1):173-9. doi: 10.1016/j.bioelechem.2006.03.037. Epub 2006 Apr 7.

Abstract

An ex vivo system for simultaneous detection of nitric oxide (NO) and L-glutamate using integrated dual 250 microm platinum disk electrodes modified individually with suitable sensing chemistries has been developed. One of the sensors was coated with an electrocatalytic layer of Ni tetrasulfonate phthalocyanine tetrasodium salt (Ni-TSPc) covered by second layer of Nafion, which stabilises on the one hand the primary oxidation product NO(+) and prevents interferences from negatively charged compounds such as NO(2)(-). For glutamate determination, the second electrode was modified with a crosslinked redox hydrogel consisting of Os complex modified poly(vinylimidazol), glutamate oxidase and peroxidase. A manual x-y-z micromanipulator on top of an inverted optical microscope was used to position the dual electrode sensor at a defined distance of 5 microm from a cell population under visual control. C6 glioma cells were stimulated simultaneously with bradykinin or VEGF to release NO while KCl was used to invoke glutamate release. For evaluation of the glutamate sensors, in some experiments HN10 cells were used. To investigate the sensitivity and reliability of the system, several drugs were applied to the cells, e.g. Ca(2+)-channel inhibitors for testing Ca(2+)-dependence of the release of NO and glutamate, rotenone for inducing oxidative stress and glutamate antagonists for analysing glutamate release. With these drugs the NO and glutamate release was modulated in a similar way then expected from previously described systems or even in-vivo measurements. We therefore conclude that our system is suitable to analyse stress-induced mechanisms in cell lines.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验