Suppr超能文献

硒蛋白谷胱甘肽过氧化物酶的过氧亚硝酸根还原酶活性:一项计算研究。

Peroxynitrite reductase activity of selenoprotein glutathione peroxidase: a computational study.

作者信息

Prabhakar Rajeev, Morokuma Keiji, Musaev Djamaladdin G

机构信息

Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA.

出版信息

Biochemistry. 2006 Jun 6;45(22):6967-77. doi: 10.1021/bi060456e.

Abstract

The peroxynitrite reductase activity of selenoprotein glutathione peroxidase (GPx) has been investigated using density functional theory calculations for peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) substrates through two different "oxidation" and "nitration" pathways. In the oxidation pathway for ONOO-, the oxidation of GPx and the subsequent formation of the selenenic acid (E-Se-OH) occur through a concerted mechanism with an energy barrier of 4.7 (3.7) kcal/mol, which is in good agreement with the computed value of 7.1 kcal/mol for the drug ebselen and the experimentally measured barrier of 8.8 kcal/mol for both ebselen and GPx. For ONOOH, the formation of the E-Se-OH prefers a stepwise mechanism with an overall barrier of 6.9 (11.3) kcal/mol, which is 10.2 (11.2) kcal/mol lower than that for hydrogen peroxide (H2O2), indicating that ONOOH is a more efficient substrate for GPx oxidation. It has been demonstrated that the active site Gln83 residue plays a critical role during the oxidation process, which is consistent with the experimental suggestions. The nitration of GPx by ONOOH produces a nitro (E-Se-NO2) product via either of two different mechanisms, isomerization and direct, having almost the same barrier heights. A comparison between the rate-determining barriers of the oxidation and nitration pathways suggests that the oxidation of GPx by ONOOH is more preferable than its nitration. It was also shown that the rate-determining barriers remain the same, 21.5 (25.5) kcal/mol, in the peroxynitrite reductase and peroxidase activities of GPx.

摘要

利用密度泛函理论计算,通过两种不同的“氧化”和“硝化”途径,对过氧亚硝酸盐/过氧亚硝酸(ONOO⁻/ONOOH)底物研究了硒蛋白谷胱甘肽过氧化物酶(GPx)的过氧亚硝酸盐还原酶活性。在ONOO⁻的氧化途径中,GPx的氧化以及随后亚硒酸(E-Se-OH)的形成通过协同机制发生,能垒为4.7(3.7)kcal/mol,这与药物依布硒仑计算值7.1 kcal/mol以及依布硒仑和GPx实验测得的能垒8.8 kcal/mol吻合良好。对于ONOOH,E-Se-OH的形成更倾向于分步机制,总能量为6.9(11.3)kcal/mol,比过氧化氢(H₂O₂)低10.2(11.2)kcal/mol,表明ONOOH是GPx氧化更有效的底物。已证明活性位点Gln83残基在氧化过程中起关键作用,这与实验结果一致。ONOOH对GPx的硝化通过两种不同机制(异构化和直接反应)产生硝基(E-Se-NO₂)产物,具有几乎相同的能垒高度。氧化和硝化途径的速率决定能垒比较表明,ONOOH对GPx的氧化比硝化更有利。还表明,在GPx的过氧亚硝酸盐还原酶和过氧化物酶活性中,速率决定能垒保持不变,为21.5(25.5)kcal/mol。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验