Suppr超能文献

阴道毛滴虫中的半胱氨酸生物合成涉及利用O-磷酸丝氨酸的半胱氨酸合酶。

Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine.

作者信息

Westrop Gareth D, Goodall Gordon, Mottram Jeremy C, Coombs Graham H

机构信息

Division of Infection and Immunity, Institute of Biomedical and Life Sciences and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom.

出版信息

J Biol Chem. 2006 Sep 1;281(35):25062-75. doi: 10.1074/jbc.M600688200. Epub 2006 May 30.

Abstract

Trichomonas vaginalis is an early divergent eukaryote with many unusual biochemical features. It is an anaerobic protozoan parasite of humans that is thought to rely heavily on cysteine as a major redox buffer, because it lacks glutathione. We report here that for synthesis of cysteine from sulfide, T. vaginalis relies upon cysteine synthase. The enzyme (TvCS1) can use either O-acetylserine or O-phosphoserine as substrates. The K(m) values of the enzyme for sulfide are very low (0.02 mm), suggesting that the enzyme may be a means of ensuring that sulfide in the parasite is maintained at a low level. T. vaginalis appears to lack serine acetyltransferase, the source of O-acetylserine in many cells, but has a functional 3-phosphoglycerate dehydrogenase and an O-phosphoserine aminotransferase that together result in the production of O-phosphoserine, suggesting that this is the physiological substrate. TvCS1 can also use thiosulfate as substrate. Overall, TvCS1 has substrate specificities similar to those reported for cysteine synthases of Aeropyrum pernix and Escherichia coli, and this is reflected by sequence similarities around the active site. We suggest that these enzymes are classified together as type B cysteine synthases, and we hypothesize that the use of O-phosphoserine is a common characteristic of these cysteine synthases. The level of cysteine synthase in T. vaginalis is regulated according to need, such that parasites growing in an environment rich in cysteine have low activity, whereas exposure to propargylglycine results in elevated cysteine synthase activity. Humans lack cysteine synthase; therefore, this parasite enzyme could be an exploitable drug target.

摘要

阴道毛滴虫是一种具有许多不寻常生化特征的早期分化真核生物。它是人类的一种厌氧原生动物寄生虫,由于缺乏谷胱甘肽,被认为严重依赖半胱氨酸作为主要的氧化还原缓冲剂。我们在此报告,对于从硫化物合成半胱氨酸,阴道毛滴虫依赖于半胱氨酸合酶。该酶(TvCS1)可以使用O - 乙酰丝氨酸或O - 磷酸丝氨酸作为底物。该酶对硫化物的K(m)值非常低(0.02 mM),这表明该酶可能是确保寄生虫中硫化物维持在低水平的一种方式。阴道毛滴虫似乎缺乏丝氨酸乙酰转移酶,而丝氨酸乙酰转移酶是许多细胞中O - 乙酰丝氨酸的来源,但它具有功能性的3 - 磷酸甘油酸脱氢酶和O - 磷酸丝氨酸转氨酶,它们共同作用产生O - 磷酸丝氨酸,这表明这是其生理底物。TvCS1也可以使用硫代硫酸盐作为底物。总体而言,TvCS1的底物特异性与嗜火栖热菌和大肠杆菌的半胱氨酸合酶报道的相似,这在活性位点周围的序列相似性中得到体现。我们建议将这些酶归为B型半胱氨酸合酶,并推测使用O - 磷酸丝氨酸是这些半胱氨酸合酶的共同特征。阴道毛滴虫中半胱氨酸合酶的水平根据需要进行调节,使得在富含半胱氨酸的环境中生长的寄生虫活性较低,而暴露于炔丙基甘氨酸会导致半胱氨酸合酶活性升高。人类缺乏半胱氨酸合酶;因此,这种寄生虫酶可能是一个可开发的药物靶点。

相似文献

1
Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine.
J Biol Chem. 2006 Sep 1;281(35):25062-75. doi: 10.1074/jbc.M600688200. Epub 2006 May 30.
2
The mercaptopyruvate sulfurtransferase of Trichomonas vaginalis links cysteine catabolism to the production of thioredoxin persulfide.
J Biol Chem. 2009 Nov 27;284(48):33485-94. doi: 10.1074/jbc.M109.054320. Epub 2009 Sep 17.
3
Two pathways for cysteine biosynthesis in Leishmania major.
Biochem J. 2009 May 27;420(3):451-62. doi: 10.1042/BJ20082441.
5
Characterization of a novel thermostable O-acetylserine sulfhydrylase from Aeropyrum pernix K1.
J Bacteriol. 2003 Apr;185(7):2277-84. doi: 10.1128/JB.185.7.2277-2284.2003.
8
Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex.
FEBS Lett. 2017 May;591(9):1212-1224. doi: 10.1002/1873-3468.12630. Epub 2017 Apr 17.

引用本文的文献

1
Targeting histone acetylation to overcome drug resistance in the parasite .
bioRxiv. 2025 Jan 7:2025.01.07.631743. doi: 10.1101/2025.01.07.631743.
3
YeeD is an essential partner for YeeE-mediated thiosulfate uptake in bacteria and regulates thiosulfate ion decomposition.
PLoS Biol. 2024 Apr 24;22(4):e3002601. doi: 10.1371/journal.pbio.3002601. eCollection 2024 Apr.
4
Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis.
Acta Crystallogr D Struct Biol. 2023 Jun 1;79(Pt 6):518-530. doi: 10.1107/S2059798323003613. Epub 2023 May 19.
5
The coral genome reveals an alternative pathway for cysteine biosynthesis in animals.
Sci Adv. 2022 Sep 23;8(38):eabq0304. doi: 10.1126/sciadv.abq0304.
6
New insights into the structure and function of an emerging drug target CysE.
3 Biotech. 2021 Aug;11(8):373. doi: 10.1007/s13205-021-02891-9. Epub 2021 Jul 18.
9
Lateral Acquisitions Repeatedly Remodel the Oxygen Detoxification Pathway in Diplomonads and Relatives.
Genome Biol Evol. 2019 Sep 1;11(9):2542-2556. doi: 10.1093/gbe/evz188.
10
The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion.
Mol Biol Evol. 2019 Oct 1;36(10):2292-2312. doi: 10.1093/molbev/msz147.

本文引用的文献

4
Structure of the O-acetylserine sulfhydrylase isoenzyme CysM from Escherichia coli.
Biochemistry. 2005 Jun 21;44(24):8620-6. doi: 10.1021/bi050485+.
5
Mechanism of the addition half of the O-acetylserine sulfhydrylase-A reaction.
Biochemistry. 2005 Apr 12;44(14):5541-50. doi: 10.1021/bi047479i.
6
Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4430-5. doi: 10.1073/pnas.0407500102. Epub 2005 Mar 11.
7
Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I.
Nature. 2004 Dec 2;432(7017):618-22. doi: 10.1038/nature03149.
8
Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex.
Nature. 2004 Oct 28;431(7012):1103-7. doi: 10.1038/nature02990.
9
MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.
Brief Bioinform. 2004 Jun;5(2):150-63. doi: 10.1093/bib/5.2.150.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验