Evis Zafer, Sato Michiko, Webster Thomas J
Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey 06531.
J Biomed Mater Res A. 2006 Sep 1;78(3):500-7. doi: 10.1002/jbm.a.30750.
To improve the mechanical properties of hydroxyapatite (HA, Ca(10)(PO(4))(6)(OH)(2)) for orthopedic applications, numerous investigators have proposed combining HA with high strength materials, specifically zirconia. Despite the fact that, compared to pure HA, it is now well-established that zirconia and HA composites have improved mechanical properties, the cytocompatibility properties of this composite remain largely uninvestigated. For these reasons, the objective of the present in vitro study was to synthesize HA and partially stabilized zirconia composites for osteoblast (bone-forming cell) adhesion assays. Various sintering temperatures and amounts of zirconia in HA composites were used in order to ascertain their influence on osteoblast adhesion. Results demonstrated increased interactions between HA and partially stabilized zirconia, when either higher sintering temperatures (between 900 and 1,300 degrees C for 1 h) or higher zirconia contents (between 10 and 40 wt %) were used during material synthesis. More importantly, greater osteoblast adhesion was measured on HA-zirconia composites sintered either at lower temperatures (specifically, 900 degrees C) or with lower amounts of zirconia added to HA composites (specifically, 10 wt %). Results further indicated that when sintered at lower temperatures the composites possessed smaller nanometer grain sizes with increased surface roughness and a more stable HA phase. For these reasons, this study suggests that to optimize osteoblast adhesion on HA and partially stabilized zirconia composites for orthopedic applications, low sintering temperatures and low amounts of zirconia should be used. This suggests that a delicate balance must be reached between increasing mechanical properties of HA without decreasing osteoblast cytocompatibility properties through zirconia addition.
为了改善用于骨科应用的羟基磷灰石(HA,Ca(10)(PO(4))(6)(OH)(2))的机械性能,众多研究人员提议将HA与高强度材料(特别是氧化锆)相结合。尽管与纯HA相比,现在已经明确氧化锆与HA复合材料具有更好的机械性能,但这种复合材料的细胞相容性仍 largely未得到研究。出于这些原因,本体外研究的目的是合成用于成骨细胞(骨形成细胞)黏附测定的HA和部分稳定的氧化锆复合材料。在HA复合材料中使用了各种烧结温度和氧化锆含量,以确定它们对成骨细胞黏附的影响。结果表明,在材料合成过程中,当使用较高的烧结温度(900至1300摄氏度,保温1小时)或较高的氧化锆含量(10至40重量%)时,HA与部分稳定的氧化锆之间的相互作用增加。更重要的是,在较低温度(特别是900摄氏度)烧结的HA-氧化锆复合材料或向HA复合材料中添加较低量氧化锆(特别是10重量%)的复合材料上,测量到更大的成骨细胞黏附。结果还进一步表明,在较低温度下烧结时,复合材料具有较小的纳米晶粒尺寸、增加的表面粗糙度和更稳定的HA相。出于这些原因,本研究表明,为了优化用于骨科应用的HA和部分稳定的氧化锆复合材料上的成骨细胞黏附,应使用较低的烧结温度和较低量的氧化锆。这表明必须在通过添加氧化锆提高HA的机械性能而不降低成骨细胞细胞相容性之间达成微妙的平衡。