Suppr超能文献

蛋白质亚细胞定位预测

Prediction of protein subcellular localization.

作者信息

Yu Chin-Sheng, Chen Yu-Ching, Lu Chih-Hao, Hwang Jenn-Kang

机构信息

Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.

出版信息

Proteins. 2006 Aug 15;64(3):643-51. doi: 10.1002/prot.21018.

Abstract

Because the protein's function is usually related to its subcellular localization, the ability to predict subcellular localization directly from protein sequences will be useful for inferring protein functions. Recent years have seen a surging interest in the development of novel computational tools to predict subcellular localization. At present, these approaches, based on a wide range of algorithms, have achieved varying degrees of success for specific organisms and for certain localization categories. A number of authors have noticed that sequence similarity is useful in predicting subcellular localization. For example, Nair and Rost (Protein Sci 2002;11:2836-2847) have carried out extensive analysis of the relation between sequence similarity and identity in subcellular localization, and have found a close relationship between them above a certain similarity threshold. However, many existing benchmark data sets used for the prediction accuracy assessment contain highly homologous sequences-some data sets comprising sequences up to 80-90% sequence identity. Using these benchmark test data will surely lead to overestimation of the performance of the methods considered. Here, we develop an approach based on a two-level support vector machine (SVM) system: the first level comprises a number of SVM classifiers, each based on a specific type of feature vectors derived from sequences; the second level SVM classifier functions as the jury machine to generate the probability distribution of decisions for possible localizations. We compare our approach with a global sequence alignment approach and other existing approaches for two benchmark data sets-one comprising prokaryotic sequences and the other eukaryotic sequences. Furthermore, we carried out all-against-all sequence alignment for several data sets to investigate the relationship between sequence homology and subcellular localization. Our results, which are consistent with previous studies, indicate that the homology search approach performs well down to 30% sequence identity, although its performance deteriorates considerably for sequences sharing lower sequence identity. A data set of high homology levels will undoubtedly lead to biased assessment of the performances of the predictive approaches-especially those relying on homology search or sequence annotations. Our two-level classification system based on SVM does not rely on homology search; therefore, its performance remains relatively unaffected by sequence homology. When compared with other approaches, our approach performed significantly better. Furthermore, we also develop a practical hybrid method, which combines the two-level SVM classifier and the homology search method, as a general tool for the sequence annotation of subcellular localization.

摘要

由于蛋白质的功能通常与其亚细胞定位相关,直接从蛋白质序列预测亚细胞定位的能力将有助于推断蛋白质功能。近年来,人们对开发预测亚细胞定位的新型计算工具兴趣激增。目前,这些基于多种算法的方法在特定生物体和某些定位类别上取得了不同程度的成功。许多作者已经注意到序列相似性在预测亚细胞定位方面很有用。例如,奈尔和罗斯特(《蛋白质科学》2002年;11:2836 - 2847)对亚细胞定位中序列相似性和一致性之间的关系进行了广泛分析,发现在一定相似性阈值以上它们之间存在密切关系。然而,许多用于预测准确性评估的现有基准数据集包含高度同源的序列——一些数据集包含序列同一性高达80 - 90%的序列。使用这些基准测试数据肯定会导致对所考虑方法性能的高估。在此,我们开发了一种基于两级支持向量机(SVM)系统的方法:第一级包括多个SVM分类器,每个分类器基于从序列中导出的特定类型的特征向量;第二级SVM分类器充当评审机器,生成可能定位的决策概率分布。我们将我们的方法与一种全局序列比对方法以及针对两个基准数据集(一个包含原核序列,另一个包含真核序列)的其他现有方法进行了比较。此外,我们对几个数据集进行了全对全序列比对,以研究序列同源性与亚细胞定位之间的关系。我们的结果与先前的研究一致,表明同源性搜索方法在序列同一性低至30%时表现良好,尽管对于序列同一性较低的序列其性能会显著下降。高同源性水平的数据集无疑会导致对预测方法性能的有偏差评估——尤其是那些依赖同源性搜索或序列注释的方法。我们基于SVM的两级分类系统不依赖同源性搜索;因此,其性能相对不受序列同源性的影响。与其他方法相比,我们的方法表现明显更好。此外,我们还开发了一种实用的混合方法,它将两级SVM分类器和同源性搜索方法结合起来,作为亚细胞定位序列注释的通用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验