Suppr超能文献

热应激会降低人体的脑血流速度,并显著损害人体的直立耐力。

Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans.

作者信息

Wilson Thad E, Cui Jian, Zhang Rong, Crandall Craig G

机构信息

Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, and Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, 7232 Greenville Ave., Dallas, TX 75231, USA.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2006 Nov;291(5):R1443-8. doi: 10.1152/ajpregu.00712.2005. Epub 2006 Jun 8.

Abstract

Orthostatic tolerance is reduced in the heat-stressed human. This study tested the following hypotheses: 1) whole body heat stress reduces cerebral blood velocity (CBV) and increases cerebral vascular resistance (CVR); and 2) reductions in CBV and increases in CVR in response to an orthostatic challenge will be greater while subjects are heat stressed. Fifteen subjects were instrumented for measurements of CBV (transcranial ultrasonography), mean arterial blood pressure (MAP), heart rate, and internal temperature. Whole body heating increased both internal temperature (36.4+/-0.1 to 37.3+/-0.1 degrees C) and heart rate (59+/-3 to 90+/-3 beats/min); P<0.001. Whole body heating also reduced CBV (62+/-3 to 53+/-2 cm/s) primarily via an elevation in CVR (1.35+/-0.06 to 1.63+/-0.07 mmHg.cm-1.s; P<0.001. A subset of subjects (n=8) were exposed to lower-body negative pressure (LBNP 10, 20, 30, 40 mmHg) in both normothermic and heat-stressed conditions. During normothermia, LBNP of 30 mmHg (highest level of LBNP achieved by the majority of subjects in both thermal conditions) did not significantly alter CBV, CVR, or MAP. During whole body heating, this LBNP decreased MAP (81+/-2 to 75+/-3 mmHg), decreased CBV (50+/-4 to 39+/-1 cm/s), and increased CVR (1.67+/-0.17 to 1.92+/-0.12 mmHg.cm-1.s); P<0.05. These data indicate that heat stress decreases CBV, and the reduction in CBV for a given orthostatic challenge is greater during heat stress. These outcomes reduce the reserve to buffer further decreases in cerebral perfusion before presyncope. Increases in CVR during whole body heating, coupled with even greater increases in CVR during orthostasis and heat stress, likely contribute to orthostatic intolerance.

摘要

热应激状态下人体的直立耐力会降低。本研究检验了以下假设:1)全身热应激会降低脑血流速度(CBV)并增加脑血管阻力(CVR);2)在热应激状态下,受试者对直立应激的反应中,CBV的降低和CVR的增加会更明显。15名受试者接受了用于测量CBV(经颅超声检查)、平均动脉血压(MAP)、心率和体内温度的仪器检测。全身加热使体内温度(从36.4±0.1℃升至37.3±0.1℃)和心率(从59±3次/分钟升至90±3次/分钟)均升高;P<0.001。全身加热还主要通过CVR的升高(从1.35±0.06升至1.63±0.07 mmHg·cm⁻¹·s)降低了CBV(从62±3降至53±2 cm/s);P<0.001。一部分受试者(n=8)在正常体温和热应激条件下均接受了下体负压(LBNP 10、20、30、40 mmHg)测试。在正常体温时,30 mmHg的LBNP(大多数受试者在两种热状态下所能达到的最高LBNP水平)并未显著改变CBV、CVR或MAP。在全身加热过程中,该LBNP使MAP降低(从81±2降至75±3 mmHg),CBV降低(从50±4降至39±1 cm/s),CVR升高(从1.67±0.17升至1.92±0.12 mmHg·cm⁻¹·s);P<0.05。这些数据表明,热应激会降低CBV,并且在热应激期间,对于给定的直立应激,CBV的降低幅度更大。这些结果减少了在晕厥前期缓冲脑灌注进一步下降的储备能力。全身加热期间CVR的升高,再加上直立和热应激期间CVR更大幅度的升高,可能导致直立不耐受。

相似文献

1
Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans.
Am J Physiol Regul Integr Comp Physiol. 2006 Nov;291(5):R1443-8. doi: 10.1152/ajpregu.00712.2005. Epub 2006 Jun 8.
3
Independent and interactive effects of incremental heat strain, orthostatic stress, and mild hypohydration on cerebral perfusion.
Am J Physiol Regul Integr Comp Physiol. 2018 Mar 1;314(3):R415-R426. doi: 10.1152/ajpregu.00109.2017. Epub 2017 Dec 6.
5
Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress.
J Appl Physiol (1985). 1997 Dec;83(6):2139-45. doi: 10.1152/jappl.1997.83.6.2139.
6
Hypohydration and prior heat stress exacerbates decreases in cerebral blood flow velocity during standing.
J Appl Physiol (1985). 2006 Dec;101(6):1744-50. doi: 10.1152/japplphysiol.00200.2006. Epub 2006 Aug 17.
7
Insufficient cutaneous vasoconstriction leading up to and during syncopal symptoms in the heat stressed human.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1168-73. doi: 10.1152/ajpheart.00290.2010. Epub 2010 Aug 6.
8
The effects of ageing and passive heating on cardiorespiratory and cerebrovascular responses to orthostatic stress in humans.
Exp Physiol. 2008 Oct;93(10):1104-17. doi: 10.1113/expphysiol.2008.042580. Epub 2008 May 30.
9
Skin cooling aids cerebrovascular function more effectively under severe than moderate heat stress.
Eur J Appl Physiol. 2010 May;109(1):101-8. doi: 10.1007/s00421-009-1298-9. Epub 2009 Nov 28.

引用本文的文献

2
Directional sensitivity analysis of the cerebral pressure-flow relationship during normothermia and moderate hyperthermia.
J Appl Physiol (1985). 2025 Apr 1;138(4):1079-1087. doi: 10.1152/japplphysiol.00712.2024. Epub 2025 Mar 26.
5
Firefighter Health: A Narrative Review of Occupational Threats and Countermeasures.
Healthcare (Basel). 2024 Feb 8;12(4):440. doi: 10.3390/healthcare12040440.
7
Exposure to passive heat and cold stress differentially modulates cerebrovascular-CO responsiveness.
J Appl Physiol (1985). 2024 Jan 1;136(1):23-32. doi: 10.1152/japplphysiol.00494.2023. Epub 2023 Nov 16.
8
Burning fuels burns the brain's bioenergetic bridges: On the importance of physiological resilience.
Exp Physiol. 2023 Nov;108(11):1366-1369. doi: 10.1113/EP091424. Epub 2023 Sep 24.
9
Compensatory hemodynamic changes in response to central hypovolemia in humans: lower body negative pressure: updates and perspectives.
J Muscle Res Cell Motil. 2023 Jun;44(2):89-94. doi: 10.1007/s10974-022-09635-z. Epub 2022 Nov 15.

本文引用的文献

1
Relationship between middle cerebral artery blood velocity and end-tidal PCO2 in the hypocapnic-hypercapnic range in humans.
J Appl Physiol (1985). 2003 Jul;95(1):129-37. doi: 10.1152/japplphysiol.01186.2002.
2
The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2.
Eur J Appl Physiol. 2006 Mar;96(5):609-14. doi: 10.1007/s00421-006-0136-6. Epub 2006 Feb 10.
3
Cerebral blood flow during orthostasis: role of arterial CO2.
Am J Physiol Regul Integr Comp Physiol. 2006 Apr;290(4):R1087-93. doi: 10.1152/ajpregu.00446.2005. Epub 2005 Nov 23.
4
Enhanced cerebral CO2 reactivity during strenuous exercise in man.
Eur J Appl Physiol. 2006 Feb;96(3):299-304. doi: 10.1007/s00421-005-0079-3. Epub 2005 Nov 12.
5
The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise.
J Physiol. 2005 Dec 1;569(Pt 2):697-704. doi: 10.1113/jphysiol.2005.095836. Epub 2005 Oct 6.
6
Cerebral carbohydrate cost of physical exertion in humans.
Am J Physiol Regul Integr Comp Physiol. 2004 Sep;287(3):R534-40. doi: 10.1152/ajpregu.00256.2004. Epub 2004 May 20.
7
Syncope, cerebral perfusion, and oxygenation.
J Appl Physiol (1985). 2003 Mar;94(3):833-48. doi: 10.1152/japplphysiol.00260.2002.
8
Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans.
J Appl Physiol (1985). 2002 Jul;93(1):85-91. doi: 10.1152/japplphysiol.01043.2001.
9
Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans.
J Appl Physiol (1985). 2002 Jul;93(1):58-64. doi: 10.1152/japplphysiol.00049.2002.
10
Inspiratory CO2 increases orthostatic tolerance during repeated tilt.
Aviat Space Environ Med. 2001 Nov;72(11):985-91.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验