Suppr超能文献

Protective effects of neurotrophic factors on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis of murine adrenal chromaffin cell line tsAM5D.

作者信息

Murata Tomiyasu, Tsuboi Masaru, Hikita Kiyomi, Kaneda Norio

机构信息

Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468-8503, Japan.

出版信息

J Biol Chem. 2006 Aug 11;281(32):22503-16. doi: 10.1074/jbc.M602579200. Epub 2006 Jun 13.

Abstract

We previously established the murine adrenal chromaffin cell line tsAM5D, which was immortalized with the temperature-sensitive simian virus 40 large T-antigen. tsAM5D cells have the capacity to differentiate into neuron-like cells in response to neurotrophic factors when the culture temperature is shifted from 33 to 39 degrees C. In this model system, the temperature shift in the absence of neurotrophic factors led to cell death. Hoechst staining analysis revealed that typical apoptotic nuclei appeared in a time-dependent manner after the temperature shift. Upon shifting to 39 degrees C, the degradation of T-antigen was accompanied by the transcriptional activation of p53 protein. Among the p53 target genes, death receptor 5 (DR5), which is the receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), showed the highest level of induction. Interestingly, TRAIL-neutralizing antibody protected tsAM5D cells from the temperature shift-induced apoptotic cell death by blocking the activation of caspase-8 and -3, indicating the involvement of TRAIL-mediated death signaling in the temperature shift-induced apoptosis. Glial cell line-derived neurotrophic factor (GDNF) inhibited the TRAIL-mediated activation of caspase-8 in tsAM5D cells exposed to 39 degrees C and cooperated with basic fibroblast growth factor and ciliary neurotrophic factor. Interestingly, the temperature shift induced oligomerization of DR5, which is the earliest process necessary for transduction of the death signal. This oligomerization was inhibited by treatment with GDNF plus ciliary neurotrophic factor but not by that with GDNF alone or GDNF plus basic fibroblast growth factor. These results are discussed with respect to the intracellular mechanism underlying the protective function of neurotrophic factors against TRAIL-mediated death signaling.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验