Suppr超能文献

利用探针水平信息降低基因分型微阵列中的噪声。

Noise reduction from genotyping microarrays using probe level information.

作者信息

Komura Daisuke, Nishimura Kunihiro, Ishikawa Shumpei, Panda Binaya, Huang Jing, Nakamura Hiroshi, Ihara Sigeo, Hirose Michitaka, Jones Keith W, Aburatani Hiroyuki

机构信息

Dependable and High-performance Computing, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

出版信息

In Silico Biol. 2006;6(1-2):79-92.

Abstract

Genomic copy number change is one of the important phenomenon observed in cancer and other genetic disorders. Recently oligonucleotide microarrays have been used to analyze changes in the copy number. Although high density microarrays provide genome wide useful data on copy number, they are often associated with substantial amount of experimental noise that could affect the performance of the analyses. We used the high density oligonucleotide genotyping microarrays in our experiments that uses redundant probe tiling approach for individual SNPs. We found that the noise in the genotyping microarray data is associated with several experimental steps during target preparation and devised an algorithm that takes into account those experimental parameters. Additionally, defective probes that do not hybridize well to the target and therefore could not be modified inherently were detected and omitted automatically by using the algorithm. When we applied the algorithm to actual datasets, we could reduce the noise substantially without compressing the dynamic range. Additionally, combinatorial use of our noise reduction algorithm and conventional breakpoint detection algorithm successfully detected a microamplification of c-myc which was overlooked in the raw data. The algorithm described here is freely available with the software upon request to all non-profit researchers.

摘要

基因组拷贝数变化是在癌症和其他遗传疾病中观察到的重要现象之一。最近,寡核苷酸微阵列已被用于分析拷贝数的变化。尽管高密度微阵列提供了全基因组范围内关于拷贝数的有用数据,但它们往往伴随着大量可能影响分析性能的实验噪声。我们在实验中使用了高密度寡核苷酸基因分型微阵列,该微阵列针对单个单核苷酸多态性(SNP)采用了冗余探针平铺方法。我们发现基因分型微阵列数据中的噪声与靶标制备过程中的几个实验步骤有关,并设计了一种考虑这些实验参数的算法。此外,通过使用该算法,可以自动检测并省略那些与靶标杂交不佳、因此无法固有修饰的缺陷探针。当我们将该算法应用于实际数据集时,我们可以在不压缩动态范围的情况下大幅降低噪声。此外,我们的降噪算法与传统断点检测算法的组合使用成功检测到了原数据中被忽视的c-myc基因微扩增。应所有非营利研究人员的要求,本文所述算法可随软件免费提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验