Miller Jon M, Raymond John, Fabian Andy, Steeghs Danny, Homan Jeroen, Reynolds Chris, van der Klis Michiel, Wijnands Rudy
Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, Michigan 48109, USA.
Nature. 2006 Jun 22;441(7096):953-5. doi: 10.1038/nature04912.
Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.
尽管致密天体(白矮星、中子星和黑洞)吸积盘是许多高能天体物理学的核心,但实现这一过程的机制在观测上仍难以确定。吸积盘必须传递角动量,物质才能径向向内落到致密天体上。磁过程产生的内粘滞性和盘风原则上都能传递角动量,但迄今为止我们缺乏任何一种情况发生的证据。在此,我们报告,在对恒星质量黑洞双星GRO J1655 - 40(参考文献6)的观测中发现的一种X射线吸收风,必定由一种磁过程提供能量,这种磁过程也能驱动物质通过吸积盘进行吸积。对这种风的详细光谱分析和建模表明,它只能由盘内部的磁粘滞性产生的压力或磁离心力提供能量。这一结果表明,黑洞的盘吸积是一个根本上的磁过程。