Suppr超能文献

交叉验证间隔缩短对多因素降维性能的影响。

The effect of reduction in cross-validation intervals on the performance of multifactor dimensionality reduction.

作者信息

Motsinger Alison A, Ritchie Marylyn D

机构信息

Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0700, USA.

出版信息

Genet Epidemiol. 2006 Sep;30(6):546-55. doi: 10.1002/gepi.20166.

Abstract

Multifactor Dimensionality Reduction (MDR) was developed to detect genetic polymorphisms that present an increased risk of disease. Cross-validation (CV) is an important part of the MDR algorithm, as it prevents over-fitting and allows the predictive ability of a model to be evaluated. CV is a computationally intensive step in the MDR algorithm. Traditionally, MDR has been implemented using 10-fold CV. In order to reduce computation time and therefore allow MDR analysis to be applied to larger datasets, we evaluated the possibility of eliminating or reducing the number of CV intervals used for analysis. We found that eliminating CV made final model selection impossible, but that reducing the number of CV intervals from ten to five caused no loss of power, thereby reducing the computation time of the algorithm by half. The validity of this reduction was confirmed with data from an Alzheimer's disease (AD) study.

摘要

多因素降维法(MDR)旨在检测那些会增加疾病风险的基因多态性。交叉验证(CV)是MDR算法的重要组成部分,因为它可以防止过度拟合,并能对模型的预测能力进行评估。交叉验证在MDR算法中是一个计算量很大的步骤。传统上,MDR采用10折交叉验证来实现。为了减少计算时间,从而使MDR分析能够应用于更大的数据集,我们评估了消除或减少用于分析的交叉验证间隔数量的可能性。我们发现,消除交叉验证会使最终模型选择变得不可能,但将交叉验证间隔数量从十个减少到五个不会导致效能损失,从而将算法的计算时间减少了一半。阿尔茨海默病(AD)研究的数据证实了这种减少的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验