Gervasoni J E, Fields S Z, Krishna S, Baker M A, Rosado M, Thuraisamy K, Hindenburg A A, Taub R N
Department of Medicine, Columbia University, New York, New York 10032.
Cancer Res. 1991 Sep 15;51(18):4955-63.
Four well defined multidrug-resistant cell lines and their drug-sensitive counterparts were examined for intracellular distribution of daunorubicin (DNR) by laser-assisted confocal fluorescence microscopy: P-glycoprotein-negative HL-60/AR cells, and P-glycoprotein-positive P388/ADR, KBV-1, and MCF-7/ADR cells. Both drug sensitive cell lines (HL-60/S, P388/S, KB3-1, and MCF-7/S) and drug-resistant cell lines (HL-60/AR, P388/ADR, KBV-1, and MCF-7/ADR) exposed to DNR showed a similar rapid distribution of drug from the plasma membrane to the perinuclear region within the first 2 min. From 2-10 min, the drug sensitive HL-60/S, P388/S, and MCF-7/S cells redistributed drug to the nucleus and to the cytoplasm in a diffuse pattern. In contrast, drug-resistant HL-60/AR, P388/ADR, and MCF-7/ADR redistributed DNR from the perinuclear region into vesicles distinct from nuclear structures, thereby assuming a "punctate" pattern. This latter redistribution could be inhibited by glucose deprivation (indicating energy dependence), or by lowering the temperature of the medium below 18 degrees C. The differences in distribution between sensitive and resistant cells did not appear to be a function of intracellular DNR content, nor the result of drug cytotoxicity. Drug-sensitive KB3-1 and -resistant KBV-1 cells did not fully follow this pattern in that they demonstrated an intracellular DNR distribution intermediate between HL-60/S and HL-60/AR cells with both "punctate" and nuclear/cytoplasmic uptake sometimes in the same cell. These data indicate that the intracellular distribution of DNR is an important determinant of drug resistance regardless of the overexpression of P-glycoprotein. The intracellular movement of drug requires the presence of glucose and a temperature above 18 degrees C, implicating energy-dependent processes and vesicle fusion in the distribution process. This intracellular transport of DNR away from the nucleus in multidrug-resistant cells may protect putative cell targets such as DNA against drug toxicity.
通过激光辅助共聚焦荧光显微镜检查了四种明确的多药耐药细胞系及其药物敏感对应细胞系中柔红霉素(DNR)的细胞内分布:P-糖蛋白阴性的HL-60/AR细胞,以及P-糖蛋白阳性的P388/ADR、KBV-1和MCF-7/ADR细胞。暴露于DNR的药物敏感细胞系(HL-60/S、P388/S、KB3-1和MCF-7/S)和耐药细胞系(HL-60/AR、P388/ADR、KBV-1和MCF-7/ADR)在最初2分钟内均显示药物从质膜到核周区域的类似快速分布。在2至10分钟内,药物敏感的HL-60/S、P388/S和MCF-7/S细胞将药物重新分布到细胞核和细胞质中,呈弥散模式。相比之下,耐药的HL-60/AR、P388/ADR和MCF-7/ADR将DNR从核周区域重新分布到与核结构不同的囊泡中,从而呈现“点状”模式。后一种重新分布可被葡萄糖剥夺(表明能量依赖性)或通过将培养基温度降至18摄氏度以下所抑制。敏感细胞和耐药细胞之间分布的差异似乎不是细胞内DNR含量的函数,也不是药物细胞毒性的结果。药物敏感的KB3-1和耐药的KBV-1细胞并未完全遵循这种模式,因为它们显示出细胞内DNR分布介于HL-60/S和HL-60/AR细胞之间,有时在同一细胞中既有“点状”摄取又有核/细胞质摄取。这些数据表明,无论P-糖蛋白是否过度表达,DNR的细胞内分布都是耐药性的一个重要决定因素。药物的细胞内移动需要葡萄糖的存在和高于18摄氏度的温度,这意味着在分布过程中存在能量依赖性过程和囊泡融合。多药耐药细胞中DNR从细胞核的这种细胞内转运可能保护诸如DNA等假定的细胞靶点免受药物毒性。