Parsons Matthew T, Riffell Jenna L, Bertram Allan K
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1.
J Phys Chem A. 2006 Jul 6;110(26):8108-15. doi: 10.1021/jp057074n.
Using an electrodynamic balance, we determined the relative humidity (RH) at which aqueous inorganic-malonic acid particles crystallized, with ammonium sulfate ((NH(4))(2)SO(4)), letovicite ((NH(4))(3)H(SO(4))(2)), or ammonium bisulfate (NH(4)HSO(4)) as the inorganic component. The results for (NH(4))(2)SO(4)-malonic acid particles and (NH(4))(3)H(SO(4))(2)-malonic acid particles show that malonic acid decreases the crystallization RH of the inorganic particles by less than 7% RH when the dry malonic acid mole fraction is less than 0.25. At a dry malonic acid mole fraction of about 0.5, the presence of malonic acid can decrease the crystallization RH of the inorganic particles by up to 35% RH. For the NH(4)HSO(4)-malonic acid particles, the presence of malonic acid does not significantly modify the crystallization RH of the inorganic particles for the entire range of dry malonic acid mole fractions studied; in all cases, either the particles did not crystallize or the crystallization RH was close to 0% RH. Size dependent measurements show that the crystallization RH of aqueous (NH(4))(2)SO(4) particles is not a strong function of particle volume. However, for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry malonic acid mole fraction = 0.36), the crystallization RH is a stronger function of particle volume, with the crystallization RH decreasing by 6 +/- 3% RH when the particle volume decreases by an order of magnitude. To our knowledge, these are the first size dependent measurements of the crystallization RH of atmospherically relevant inorganic-organic particles. These results suggest that for certain organic mole fractions the particle size and observation time need to be considered when extrapolating laboratory crystallization results to atmospheric scenarios. For aqueous (NH(4))(2)SO(4) particles, the homogeneous nucleation rate data are a strong function of RH, but for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry organic mole fraction = 0.36), the rates are not as dependent on RH. The homogeneous nucleation rates for aqueous (NH(4))(2)SO(4) particles were parametrized using classical nucleation theory, and from this analysis we determined that the interfacial surface tension between the crystalline ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is between 0.053 and 0.070 J m(-2).
我们使用电动天平测定了无机-丙二酸水性颗粒结晶时的相对湿度(RH),其中无机成分分别为硫酸铵((NH₄)₂SO₄)、水合硫酸氢铵((NH₄)₃H(SO₄)₂)或硫酸氢铵(NH₄HSO₄)。对于(NH₄)₂SO₄-丙二酸颗粒和(NH₄)₃H(SO₄)₂-丙二酸颗粒的研究结果表明,当干燥丙二酸的摩尔分数小于0.25时,丙二酸使无机颗粒的结晶相对湿度降低不到7%RH。在干燥丙二酸摩尔分数约为0.5时,丙二酸的存在可使无机颗粒的结晶相对湿度降低多达35%RH。对于NH₄HSO₄-丙二酸颗粒,在所研究的干燥丙二酸摩尔分数的整个范围内,丙二酸的存在并未显著改变无机颗粒的结晶相对湿度;在所有情况下,要么颗粒未结晶,要么结晶相对湿度接近0%RH。尺寸依赖性测量表明,水性(NH₄)₂SO₄颗粒的结晶相对湿度并非颗粒体积的强函数。然而,对于水性(NH₄)₂SO₄-丙二酸颗粒(干燥丙二酸摩尔分数 = 0.36),结晶相对湿度是颗粒体积的更强函数,当颗粒体积减小一个数量级时,结晶相对湿度降低6±3%RH。据我们所知,这些是与大气相关的无机-有机颗粒结晶相对湿度的首次尺寸依赖性测量。这些结果表明,对于某些有机摩尔分数,在将实验室结晶结果外推至大气情况时,需要考虑颗粒大小和观测时间。对于水性(NH₄)₂SO₄颗粒,均相成核速率数据是相对湿度的强函数,但对于水性(NH₄)₂SO₄-丙二酸颗粒(干燥有机摩尔分数 = 0.36),速率对相对湿度的依赖性没那么大。使用经典成核理论对水性(NH₄)₂SO₄颗粒的均相成核速率进行了参数化,通过该分析我们确定了结晶硫酸铵临界核与硫酸铵水溶液之间的界面表面张力在0.053至0.070 J m⁻²之间。