Suppr超能文献

取代的1-(3,3-二苯基丙基)-哌啶基酰胺和脲对CCR5受体结合亲和力的比较定量构效关系建模

Comparative QSAR modeling of CCR5 receptor binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas.

作者信息

Thomas Leonard J, Roy Kunal

机构信息

Drug Theoretics and Cheminformatics Lab, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.

出版信息

Bioorg Med Chem Lett. 2006 Sep 1;16(17):4467-74. doi: 10.1016/j.bmcl.2006.06.031. Epub 2006 Jun 27.

Abstract

The present QSAR study attempts to explore the structural and physicochemical requirements of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas for CCR5 binding affinity using linear free energy-related (LFER) model of Hansch. QSAR models have been developed using electronic (Hammett sigma), hydrophobicity (pi), and steric (molar refractivity and STERIMOL L, B1, and B5) parameters of phenyl ring substituents of the compounds along with appropriate dummy variables. Whole molecular descriptor like partition coefficient (logP(calcd)) was also tried as an additional descriptor. Statistical techniques like stepwise regression, multiple linear regression with factor analysis as the data preprocessing step (FA-MLR), partial least squares with factor analysis as the preprocessing step (FA-PLS), principal component regression analysis (PCRA), multiple linear regression with genetic function approximation (GFA-MLR), and genetic partial least squares (G/PLS) were applied to identify the structural and physicochemical requirements for the CCR5 binding affinity. The generated equations were statistically validated using leave-one-out technique. The quality of equations obtained from stepwise regression, FA-MLR, FA-PLS, and PCRA is of acceptable statistical range (explained variance ranging from 71.9% to 80.4%, while predicted variance ranging from 67.4% to 77.0%). The GFA-derived models show high intercorrelation among predictor variables used in the equations while the G/PLS model shows lowest statistical quality among all types of models. The best models were also subjected to leave-25%-out crossvalidation.

摘要

本定量构效关系(QSAR)研究试图利用Hansch的线性自由能相关(LFER)模型,探索取代的1-(3,3-二苯基丙基)-哌啶基酰胺和脲对CCR5结合亲和力的结构和物理化学要求。使用化合物苯环取代基的电子(Hammett σ)、疏水性(π)和立体(摩尔折射率以及STERIMOL L、B1和B5)参数以及适当的虚拟变量,开发了QSAR模型。还尝试将诸如分配系数(计算logP)之类的全分子描述符作为附加描述符。应用逐步回归、以因子分析为数据预处理步骤的多元线性回归(FA-MLR)、以因子分析为预处理步骤的偏最小二乘法(FA-PLS)、主成分回归分析(PCRA)、具有遗传函数逼近的多元线性回归(GFA-MLR)以及遗传偏最小二乘法(G/PLS)等统计技术,以确定CCR5结合亲和力的结构和物理化学要求。使用留一法技术对生成的方程进行统计验证。从逐步回归、FA-MLR、FA-PLS和PCRA获得的方程质量在可接受的统计范围内(解释方差范围为71.9%至80.4%,而预测方差范围为67.4%至77.0%)。GFA衍生模型显示方程中使用的预测变量之间具有高度相互相关性,而G/PLS模型在所有类型的模型中显示出最低的统计质量。还对最佳模型进行了留25%交叉验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验