Bi Xiaohong, Yang Xu, Bostrom Mathias P G, Camacho Nancy Pleshko
The Musculoskeletal Imaging and Spectroscopy Lab, Hospital for Special Surgery, New York, NY 10021, USA.
Biochim Biophys Acta. 2006 Jul;1758(7):934-41. doi: 10.1016/j.bbamem.2006.05.014. Epub 2006 May 23.
Significant complications in the management of osteoarthritis (OA) are the inability to identify early cartilage changes during the development of the disease, and the lack of techniques to evaluate the tissue response to therapeutic and tissue engineering interventions. In recent studies several spectroscopic parameters have been elucidated by Fourier transform infrared imaging spectroscopy (FT-IRIS) that enable evaluation of molecular and compositional changes in human cartilage with progressively severe OA, and in repair cartilage from animal models. FT-IRIS permits evaluation of early-stage matrix changes in the primary components of cartilage, collagen and proteoglycan on histological sections at a spatial resolution of approximately 6.25 microm. In osteoarthritic cartilage, the collagen integrity, monitored by the ratio of peak areas at 1338 cm(-1)/Amide II, was found to correspond to the histological Mankin grade, the gold standard scale utilized to evaluate cartilage degeneration. Apparent matrix degradation was observable in the deep zone of cartilage even in the early stages of OA. FT-IRIS studies also found that within the territorial matrix of the cartilage cells (chondrocytes), proteoglycan content increased with progression of cartilage degeneration while the collagen content remained the same, but the collagen integrity decreased. Regenerative (repair) tissue from microfracture treatment of an equine cartilage defect showed significant changes in collagen distribution and loss in proteoglycan content compared to the adjacent normal cartilage, with collagen fibrils demonstrating a random orientation in most of the repair tissue. These studies demonstrate that FT-IRIS is a powerful technique that can provide detailed ultrastructural information on heterogeneous tissues such as diseased cartilage and thus has great potential as a diagnostic modality for cartilage degradation and repair.
骨关节炎(OA)管理中的重大并发症是在疾病发展过程中无法识别早期软骨变化,以及缺乏评估组织对治疗和组织工程干预反应的技术。在最近的研究中,傅里叶变换红外成像光谱(FT-IRIS)阐明了几个光谱参数,这些参数能够评估患有逐渐严重OA的人类软骨以及动物模型修复软骨中的分子和成分变化。FT-IRIS允许在组织学切片上以约6.25微米的空间分辨率评估软骨主要成分胶原蛋白和蛋白聚糖的早期基质变化。在骨关节炎软骨中,通过1338 cm(-1)/酰胺II处峰面积比监测的胶原蛋白完整性被发现与组织学曼金分级相对应,曼金分级是用于评估软骨退变的金标准量表。即使在OA的早期阶段,在软骨深层也可观察到明显的基质降解。FT-IRIS研究还发现,在软骨细胞(软骨细胞)的区域基质内,蛋白聚糖含量随着软骨退变的进展而增加,而胶原蛋白含量保持不变,但胶原蛋白完整性下降。与相邻的正常软骨相比,马软骨缺损微骨折治疗后的再生(修复)组织在胶原蛋白分布上有显著变化,蛋白聚糖含量减少,大多数修复组织中的胶原纤维呈随机取向。这些研究表明,FT-IRIS是一种强大的技术,可以提供有关患病软骨等异质组织的详细超微结构信息,因此作为软骨退变和修复的诊断方式具有巨大潜力。