Vega Francisco, Medeiros L Jeffrey, Leventaki Vasiliki, Atwell Coralyn, Cho-Vega Jeong Hee, Tian Ling, Claret Francois-Xavier, Rassidakis George Z
Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
Cancer Res. 2006 Jul 1;66(13):6589-97. doi: 10.1158/0008-5472.CAN-05-3018.
Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) frequently carries the t(2;5)(p23;q35) resulting in aberrant expression of chimeric nucleophosmin-ALK. Previously, nucleophosmin-ALK has been shown to activate phosphatidylinositol 3-kinase (PI3K) and its downstream effector, the serine/threonine kinase AKT. In this study, we hypothesized that the mammalian target of rapamycin (mTOR) pathway, which functions downstream of AKT, mediates the oncogenic effects of activated PI3K/AKT in ALK+ ALCL. Here, we provide evidence that mTOR signaling phosphoproteins, including mTOR, eukaryotic initiation factor 4E-binding protein-1, p70S6K, and ribosomal protein S6, are highly phosphorylated in ALK+ ALCL cell lines and tumors. We also show that AKT activation contributes to mTOR phosphorylation, at least in part, as forced expression of constitutively active AKT by myristoylated AKT adenovirus results in increased phosphorylation of mTOR and its downstream effectors. Conversely, inhibition of AKT expression or activity results in decreased mTOR phosphorylation. In addition, pharmacologic inhibition of PI3K/AKT down-regulates the activation of the mTOR signaling pathway. We also show that inhibition of mTOR with rapamycin, as well as silencing mTOR gene product expression using mTOR-specific small interfering RNA, decreased phosphorylation of mTOR signaling proteins and induced cell cycle arrest and apoptosis in ALK+ ALCL cells. Cell cycle arrest was associated with modulation of G(1)-S-phase regulators, including the cyclin-dependent kinase inhibitors p21(waf1) and p27(kip1). Apoptosis following inhibition of mTOR expression or function was associated with down-regulation of antiapoptotic proteins, including c-FLIP, MCL-1, and BCL-2. These findings suggest that the mTOR pathway contributes to nucleophosmin-ALK/PI3K/AKT-mediated tumorigenesis and that inhibition of mTOR represents a potential therapeutic strategy in ALK+ ALCL.
间变性淋巴瘤激酶(ALK)阳性间变性大细胞淋巴瘤(ALCL)常伴有t(2;5)(p23;q35),导致嵌合核磷蛋白-ALK异常表达。此前,已证明核磷蛋白-ALK可激活磷脂酰肌醇3激酶(PI3K)及其下游效应物丝氨酸/苏氨酸激酶AKT。在本研究中,我们假设在AKT下游发挥作用的哺乳动物雷帕霉素靶蛋白(mTOR)通路介导了活化的PI3K/AKT在ALK+ ALCL中的致癌作用。在此,我们提供证据表明,mTOR信号磷酸化蛋白,包括mTOR、真核起始因子4E结合蛋白-1、p70S6K和核糖体蛋白S6,在ALK+ ALCL细胞系和肿瘤中高度磷酸化。我们还表明,AKT激活至少部分促成了mTOR磷酸化,因为肉豆蔻酰化AKT腺病毒强制表达组成型活性AKT会导致mTOR及其下游效应物磷酸化增加。相反,抑制AKT表达或活性会导致mTOR磷酸化减少。此外,PI3K/AKT的药理学抑制下调了mTOR信号通路的激活。我们还表明,用雷帕霉素抑制mTOR以及使用mTOR特异性小干扰RNA沉默mTOR基因产物表达,可降低mTOR信号蛋白的磷酸化,并诱导ALK+ ALCL细胞的细胞周期停滞和凋亡。细胞周期停滞与G(1)-S期调节因子的调节有关,包括细胞周期蛋白依赖性激酶抑制剂p21(waf1)和p27(kip1)。抑制mTOR表达或功能后的凋亡与抗凋亡蛋白的下调有关,包括c-FLIP、MCL-1和BCL-2。这些发现表明,mTOR通路促成了核磷蛋白-ALK/PI3K/AKT介导的肿瘤发生,并且抑制mTOR代表了ALK+ ALCL中的一种潜在治疗策略。