Suppr超能文献

一种混合基因团队模型及其在基因组分析中的应用。

A hybrid gene team model and its application to genome analysis.

作者信息

Kim Sun, Choi Jeong-Hyeon, Saple Amit, Yang Jiong

机构信息

School of Informatics and Center for Genomics and Bioinformatics, Indiana University Bloomington, Indiana 47408, USA.

出版信息

J Bioinform Comput Biol. 2006 Apr;4(2):171-96. doi: 10.1142/s0219720006001850.

Abstract

It is well-known that functionally related genes occur in a physically clustered form, especially operons in bacteria. By leveraging on this fact, there has recently been an interesting problem formulation known as gene team model, which searches for a set of genes that co-occur in a pair of closely related genomes. However, many gene teams, even experimentally verified operons, frequently scatter within other genomes. Thus, the gene team model should be refined to reflect this observation. In this paper, we generalized the gene team model, that looks for gene clusters in a physically clustered form, to multiple genome cases with relaxed constraints. We propose a novel hybrid pattern model that combines the set and the sequential pattern models. Our model searches for gene clusters with and/or without physical proximity constraint. This model is implemented and tested with 97 genomes (120 replicons). The result was analyzed to show the usefulness of our model. We also compared the result from our hybrid model to those from the traditional gene team model. We also show that predicted gene teams can be used for various genome analysis: operon prediction, phylogenetic analysis of organisms, contextual sequence analysis and genome annotation. Our program is fast enough to provide a service on the web at http://platcom.informatics.indiana.edu/platcom/. Users can select any combination of 97 genomes to predict gene teams.

摘要

众所周知,功能相关的基因以物理聚集的形式出现,尤其是细菌中的操纵子。基于这一事实,最近出现了一个有趣的问题表述,即基因团队模型,它搜索在一对密切相关的基因组中共同出现的一组基因。然而,许多基因团队,甚至是经过实验验证的操纵子,经常分散在其他基因组中。因此,基因团队模型应加以完善以反映这一观察结果。在本文中,我们将寻找物理聚集形式基因簇的基因团队模型推广到具有宽松约束的多个基因组情况。我们提出了一种新颖的混合模式模型,它结合了集合模式模型和序列模式模型。我们的模型搜索具有和/或不具有物理邻近约束的基因簇。该模型已在97个基因组(120个复制子)上实现并进行了测试。对结果进行分析以展示我们模型的实用性。我们还将混合模型的结果与传统基因团队模型的结果进行了比较。我们还表明,预测的基因团队可用于各种基因组分析:操纵子预测、生物体的系统发育分析、上下文序列分析和基因组注释。我们的程序速度足够快,可在http://platcom.informatics.indiana.edu/platcom/网站上提供服务。用户可以选择97个基因组的任何组合来预测基因团队。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验