Suppr超能文献

土壤腐生菌蜡样芽孢杆菌在液体土壤提取物和土壤中的生命周期分析。

Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil.

作者信息

Vilain Sébastien, Luo Yun, Hildreth Michael B, Brözel Volker S

机构信息

Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.

出版信息

Appl Environ Microbiol. 2006 Jul;72(7):4970-7. doi: 10.1128/AEM.03076-05.

Abstract

Bacillus is commonly isolated from soils, with organisms of Bacillus cereus sensu lato being prevalent. Knowledge of the ecology of B. cereus and other Bacillus species in soil is far from complete. While the older literature favors a model of growth on soil-associated organic matter, the current paradigm is that B. cereus sensu lato germinates and grows in association with animals or plants, resulting in either symbiotic or pathogenic interactions. An in terra approach to study soil-associated bacteria is described, using filter-sterilized soil-extracted soluble organic matter (SESOM) and artificial soil microcosms (ASM) saturated with SESOM. B. cereus ATCC 14579 displayed a life cycle, with the ability to germinate, grow, and subsequently sporulate in both the liquid SESOM extract and in ASM inserted into wells in agar medium. Cells grew in liquid SESOM without separating, forming multicellular structures that coalesced to form clumps and encasing the ensuing spores in an extracellular matrix. Bacillus was able to translocate from the point of inoculation through soil microcosms as shown by the emergence of outgrowths on the surrounding agar surface. Microscopic inspection revealed bundles of parallel chains inside the soil. The motility inhibitor L-ethionine failed to suppress outgrowth, ruling out translocation by a flagellar-mediated mechanism such as swimming or swarming. Bacillus subtilis subsp. subtilis Marburg and four Bacillus isolates taken at random from soils also displayed a life cycle in SESOM and ASM and were all able to translocate through ASM, even in presence of L-ethionine. These data indicate that B. cereus is a saprophytic bacterium that is able to grow in soil and furthermore that it is adapted to translocate by employing a multicellular mode of growth.

摘要

芽孢杆菌通常从土壤中分离得到,蜡样芽孢杆菌复合群的微生物较为常见。关于土壤中蜡样芽孢杆菌和其他芽孢杆菌物种的生态学知识还远未完善。虽然早期文献倾向于土壤相关有机物上的生长模型,但当前的范式是蜡样芽孢杆菌复合群与动物或植物相关联发芽并生长,从而导致共生或致病相互作用。本文描述了一种研究土壤相关细菌的原位方法,使用经滤膜除菌的土壤提取可溶性有机物(SESOM)和用SESOM饱和的人工土壤微宇宙(ASM)。蜡样芽孢杆菌ATCC 14579在液体SESOM提取物和插入琼脂培养基孔中的ASM中均显示出一个生命周期,具备发芽、生长以及随后形成芽孢的能力。细胞在液体SESOM中生长而不分离,形成多细胞结构,这些结构聚合并形成团块,并将随后形成的芽孢包裹在细胞外基质中。如周围琼脂表面出现的生长物所示,芽孢杆菌能够从接种点穿过土壤微宇宙。显微镜检查显示土壤内部有平行链束。运动抑制剂L-乙硫氨酸未能抑制生长物的出现,排除了通过鞭毛介导的机制(如游动或群体运动)进行移位的可能性。枯草芽孢杆菌枯草亚种马尔堡菌株以及从土壤中随机选取的四种芽孢杆菌分离株在SESOM和ASM中也显示出一个生命周期,并且即使在存在L-乙硫氨酸的情况下也都能够穿过ASM。这些数据表明蜡样芽孢杆菌是一种能够在土壤中生长的腐生细菌,而且它通过采用多细胞生长模式来适应移位。

相似文献

1
Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil.
Appl Environ Microbiol. 2006 Jul;72(7):4970-7. doi: 10.1128/AEM.03076-05.
2
Proteomic analysis of Bacillus cereus growing in liquid soil organic matter.
FEMS Microbiol Lett. 2007 Jun;271(1):40-7. doi: 10.1111/j.1574-6968.2007.00692.x. Epub 2007 Mar 28.
3
Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria.
Appl Microbiol Biotechnol. 2009 May;83(1):161-73. doi: 10.1007/s00253-009-1965-0. Epub 2009 Mar 24.
4
Sympatric soil communities of Bacillus cereus sensu lato: population structure and potential plasmid dynamics of pXO1- and pXO2-like elements.
FEMS Microbiol Ecol. 2009 Dec;70(3):344-55. doi: 10.1111/j.1574-6941.2009.00771.x. Epub 2009 Sep 19.
5
Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda).
FEMS Microbiol Ecol. 2006 Apr;56(1):132-40. doi: 10.1111/j.1574-6941.2006.00063.x.
6
Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host.
J Invertebr Pathol. 2008 Sep;99(1):103-11. doi: 10.1016/j.jip.2008.04.007. Epub 2008 Apr 27.
8
The hidden lifestyles of Bacillus cereus and relatives.
Environ Microbiol. 2003 Aug;5(8):631-40. doi: 10.1046/j.1462-2920.2003.00461.x.
9
Filtration of Bacillus subtilis and Bacillus cereus spores in a pyroclastic topsoil, carbonate Apennines, southern Italy.
Colloids Surf B Biointerfaces. 2009 Apr 1;70(1):25-8. doi: 10.1016/j.colsurfb.2008.12.009. Epub 2008 Dec 9.
10
Bacillus cereus cell and spore properties as influenced by the micro-structure of the medium.
J Appl Microbiol. 2009 Jun;106(6):1838-48. doi: 10.1111/j.1365-2672.2009.04162.x. Epub 2009 Feb 23.

引用本文的文献

1
Self-growth suppression in is caused by a diffusible antagonist.
ISME Commun. 2025 Feb 17;5(1):ycaf032. doi: 10.1093/ismeco/ycaf032. eCollection 2025 Jan.
2
Self-growth suppression in is caused by a diffusible antagonist.
bioRxiv. 2024 Jun 2:2024.06.01.596975. doi: 10.1101/2024.06.01.596975.
3
Pleiotropic hubs drive bacterial surface competition through parallel changes in colony composition and expansion.
PLoS Biol. 2023 Oct 16;21(10):e3002338. doi: 10.1371/journal.pbio.3002338. eCollection 2023 Oct.
4
The Bacterial G Signal Transduction Inhibitor FR900359 Impairs Soil-Associated Nematodes.
J Chem Ecol. 2023 Oct;49(9-10):549-569. doi: 10.1007/s10886-023-01442-1. Epub 2023 Jul 15.
5
USDA 110 displays plasticity in the attachment phenotype when grown in different soybean root exudate compounds.
Front Microbiol. 2023 May 18;14:1190396. doi: 10.3389/fmicb.2023.1190396. eCollection 2023.
6
Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on .
Pathogens. 2023 Mar 19;12(3):485. doi: 10.3390/pathogens12030485.
7
From cereus to anthrax and back again: Assessment of the temperature-dependent phenotypic switching in the "cross-over" strain G9241.
Front Microbiol. 2023 Mar 2;14:1113562. doi: 10.3389/fmicb.2023.1113562. eCollection 2023.
8
Genetic diversity of enterotoxigenic strains in coriander in southwestern Mexico.
PeerJ. 2022 Jul 1;10:e13667. doi: 10.7717/peerj.13667. eCollection 2022.
9
The Complex Role of Lactic Acid Bacteria in Food Detoxification.
Nutrients. 2022 May 12;14(10):2038. doi: 10.3390/nu14102038.

本文引用的文献

1
Bacillus cereus food poisoning and its toxins.
J Food Prot. 2005 Mar;68(3):636-48. doi: 10.4315/0362-028x-68.3.636.
2
Natural dissemination of Bacillus anthracis spores in northern Canada.
Appl Environ Microbiol. 2005 Mar;71(3):1610-5. doi: 10.1128/AEM.71.3.1610-1615.2005.
3
Population structure and evolution of the Bacillus cereus group.
J Bacteriol. 2004 Dec;186(23):7959-70. doi: 10.1128/JB.186.23.7959-7970.2004.
4
Bacterial insecticidal toxins.
Crit Rev Microbiol. 2004;30(1):33-54. doi: 10.1080/10408410490270712.
6
Artificial soil microcosms: a tool for studying microbial autecology under controlled conditions.
J Microbiol Methods. 2004 Feb;56(2):287-90. doi: 10.1016/j.mimet.2003.10.005.
7
Multilocus sequence typing scheme for bacteria of the Bacillus cereus group.
Appl Environ Microbiol. 2004 Jan;70(1):191-201. doi: 10.1128/AEM.70.1.191-201.2004.
8
The hidden lifestyles of Bacillus cereus and relatives.
Environ Microbiol. 2003 Aug;5(8):631-40. doi: 10.1046/j.1462-2920.2003.00461.x.
9
Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.
Nature. 2003 May 1;423(6935):87-91. doi: 10.1038/nature01582.
10
Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE.
Microb Ecol. 2003 Mar;45(3):302-16. doi: 10.1007/s00248-002-2034-8. Epub 2003 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验