Paesani F, Whaley K B
Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA.
J Chem Phys. 2006 Jun 21;124(23):234310. doi: 10.1063/1.2202318.
We present a detailed theoretical study of the solvation structure and solvent induced vibrational shifts for an OCS molecule embedded in pure parahydrogen clusters and in mixed parahydrogen/helium clusters. The use of two recent OCS-(parahydrogen) and OCS-helium ab initio potential energy surfaces having explicit dependence on the asymmetric stretch of the OCS molecule allows calculation of the frequency shift of the OCS nu(3) vibration as a function of the cluster size and composition. We present results for clusters containing up to a full first solvation shell of parahydrogen (N=17 molecules), and up to M=128-N helium atoms. Due to the greater interaction strength of parahydrogen than helium with OCS, in the mixed clusters the parahydrogen molecules always displace He atoms in the first solvation shell around OCS and form multiple axial rings as in the pure parahydrogen clusters. In the pure clusters, the chemical potential of parahydrogen shows several magic numbers (N=8,11,14) that reflect an enhanced stability of axial rings containing one less molecule than required for complete filling at N=17. Only the N=14 magic number survives in the mixed clusters, as a result of different filling orders of the rings and greater delocalization of both components. The OCS vibration shows a redshift in both pure and mixed clusters, with N-dependent values that are in good agreement with the available experimental data. The dependence of the frequency shift on the cluster size and its composition is analyzed in terms of the parahydrogen and helium density distributions around the OCS molecule as a function of N and M. The frequency shift is found to be strongly dependent on the detailed distribution of the parahydrogen molecules in the pure parahydrogen clusters, and to be larger but show a smoother dependence on N in the presence of additional helium, consistent with the more delocalized nature of the mixed clusters.
我们对嵌入纯仲氢团簇以及仲氢/氦混合团簇中的OCS分子的溶剂化结构和溶剂诱导振动位移进行了详细的理论研究。利用两个最近的OCS -(仲氢)和OCS -氦从头算势能面,其明确依赖于OCS分子的不对称拉伸,从而能够计算OCS ν(3)振动的频率位移作为团簇大小和组成的函数。我们给出了包含多达完整的第一溶剂化层仲氢(N = 17个分子)以及多达M = 128 - N个氦原子的团簇的结果。由于仲氢与OCS的相互作用强度大于氦与OCS的相互作用强度,在混合团簇中,仲氢分子总是在OCS周围的第一溶剂化层中取代He原子,并像在纯仲氢团簇中一样形成多个轴向环。在纯团簇中,仲氢的化学势显示出几个幻数(N = 8、11、14),这些幻数反映了轴向环的稳定性增强,其中包含的分子数比N = 17时完全填充所需的分子数少一个。由于环的填充顺序不同以及两种组分的离域性更大,只有N = 14这个幻数在混合团簇中保留下来。OCS振动在纯团簇和混合团簇中均显示出红移,其与N相关的值与现有的实验数据吻合良好。根据OCS分子周围仲氢和氦的密度分布作为N和M的函数,分析了频率位移对团簇大小及其组成的依赖性。发现频率位移强烈依赖于纯仲氢团簇中仲氢分子的详细分布,并且在存在额外氦的情况下对N的依赖性更大但表现得更平滑,这与混合团簇更离域的性质一致。