Suppr超能文献

节肢动物系统发育:栉蚕的大脑组织表明其与螯肢动物干群存在古老的关系。

Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage.

作者信息

Strausfeld Nicholas J, Strausfeld Camilla Mok, Loesel Rudi, Rowell David, Stowe Sally

机构信息

Division of Neurobiology and The Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.

出版信息

Proc Biol Sci. 2006 Aug 7;273(1596):1857-66. doi: 10.1098/rspb.2006.3536.

Abstract

Neuroanatomical studies have demonstrated that the architecture and organization among neuropils are highly conserved within any order of arthropods. The shapes of nerve cells and their neuropilar arrangements provide robust characters for phylogenetic analyses. Such analyses so far have agreed with molecular phylogenies in demonstrating that entomostracans+malacostracans belong to a clade (Tetraconata) that includes the hexapods. However, relationships among what are considered to be paraphyletic groups or among the stem arthropods have not yet been satisfactorily resolved. The present parsimony analyses of independent neuroarchitectural characters from 27 arthropods and lobopods demonstrate relationships that are congruent with phylogenies derived from molecular studies, except for the status of the Onychophora. The present account describes the brain of the onychophoran Euperipatoides rowelli, demonstrating that the structure and arrangements of its neurons, cerebral neuropils and sensory centres are distinct from arrangements in the brains of mandibulates. Neuroanatomical evidence suggests that the organization of the onychophoran brain is similar to that of the brains of chelicerates.

摘要

神经解剖学研究表明,在任何节肢动物目中,神经纤维网之间的结构和组织都高度保守。神经细胞的形状及其在神经纤维网中的排列为系统发育分析提供了可靠的特征。到目前为止,此类分析在证明鳃足亚纲动物+软甲亚纲动物属于一个包括六足动物的进化枝(四纲动物)方面与分子系统发育学一致。然而,被认为是并系群的类群之间或干群节肢动物之间的关系尚未得到令人满意的解决。目前对27种节肢动物和叶足动物的独立神经结构特征进行的简约分析表明,除了有爪动物的地位外,这些关系与分子研究得出的系统发育一致。本报告描述了有爪动物罗氏真足虫的大脑,表明其神经元、脑神经元纤维网和感觉中心的结构和排列与咀嚼式口器动物大脑中的排列不同。神经解剖学证据表明,有爪动物大脑的组织与螯肢动物大脑的组织相似。

相似文献

4
The Phylogeny and Evolutionary History of Arthropods.
Curr Biol. 2019 Jun 17;29(12):R592-R602. doi: 10.1016/j.cub.2019.04.057.
5
Fossils and the Evolution of the Arthropod Brain.
Curr Biol. 2016 Oct 24;26(20):R989-R1000. doi: 10.1016/j.cub.2016.09.012.
6
The velvet worm brain unveils homologies and evolutionary novelties across panarthropods.
BMC Biol. 2022 Jan 25;20(1):26. doi: 10.1186/s12915-021-01196-w.
8
Complex brain and optic lobes in an early Cambrian arthropod.
Nature. 2012 Oct 11;490(7419):258-61. doi: 10.1038/nature11495.
9
Evolution of the central complex in the arthropod brain with respect to the visual system.
Arthropod Struct Dev. 2008 Sep;37(5):347-62. doi: 10.1016/j.asd.2008.01.008. Epub 2008 Feb 19.
10
Brain structure resolves the segmental affinity of anomalocaridid appendages.
Nature. 2014 Sep 25;513(7519):538-42. doi: 10.1038/nature13486. Epub 2014 Jul 16.

引用本文的文献

1
Revisiting the scorpion central nervous system using microCT.
Sci Rep. 2024 Nov 14;14(1):27961. doi: 10.1038/s41598-024-76917-6.
2
A three-dimensional immunofluorescence atlas of the brain of the hackled-orb weaver spider, .
bioRxiv. 2024 Sep 9:2024.09.05.611298. doi: 10.1101/2024.09.05.611298.
4
The median eyes of trilobites.
Sci Rep. 2023 Mar 8;13(1):3917. doi: 10.1038/s41598-023-31089-7.
7
The velvet worm brain unveils homologies and evolutionary novelties across panarthropods.
BMC Biol. 2022 Jan 25;20(1):26. doi: 10.1186/s12915-021-01196-w.
10

本文引用的文献

1
Phylogeny of the Metazoa Based on Morphological and 18S Ribosomal DNA Evidence.
Cladistics. 1998 Sep;14(3):249-285. doi: 10.1111/j.1096-0031.1998.tb00338.x.
2
Arthropod Cladistics: Combined Analysis of Histone H3 and U2 snRNA Sequences and Morphology.
Cladistics. 2000 Jun;16(2):155-203. doi: 10.1111/j.1096-0031.2000.tb00352.x.
6
Common design in a unique midline neuropil in the brains of arthropods.
Arthropod Struct Dev. 2002 Sep;31(1):77-91. doi: 10.1016/S1467-8039(02)00017-8.
7
Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic.
Proc Biol Sci. 2005 Feb 22;272(1561):395-401. doi: 10.1098/rspb.2004.2917.
8
Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants.
J Neurosci. 2004 Jun 23;24(25):5798-809. doi: 10.1523/JNEUROSCI.1102-04.2004.
10
Putative phenoloxidases in the tunicate Ciona intestinalis and the origin of the arthropod hemocyanin superfamily.
J Comp Physiol B. 2004 Mar;174(2):169-80. doi: 10.1007/s00360-003-0402-4. Epub 2003 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验