Suppr超能文献

使用凝集素选择的唾液酸糖蛋白进行质谱分析的比较血清糖蛋白质组学:应用于胰腺癌血清

Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum.

作者信息

Zhao Jia, Simeone Diane M, Heidt David, Anderson Michelle A, Lubman David M

机构信息

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.

出版信息

J Proteome Res. 2006 Jul;5(7):1792-802. doi: 10.1021/pr060034r.

Abstract

A strategy is developed in this study for identifying sialylated glycoprotein markers in human cancer serum. This method consists of three steps: lectin affinity selection, a liquid separation and characterization of the glycoprotein markers using mass spectrometry. In this work, we use three different lectins (Wheat Germ Agglutinin, (WGA) Elderberry lectin,(SNA), Maackia amurensis lectin, (MAL)) to extract sialylated glycoproteins from normal and cancer serum. Twelve highly abundant proteins are depleted from the serum using an IgY-12 antibody column. The use of the different lectin columns allows one to monitor the distribution of alpha(2,3) and alpha(2,6) linkage type sialylation in cancer serum vs that in normal samples. Extracted glycoproteins are fractionated using NPS-RP-HPLC followed by SDS-PAGE. Target glycoproteins are characterized further using mass spectrometry to elucidate the carbohydrate structure and glycosylation site. We applied this approach to the analysis of sialylated glycoproteins in pancreatic cancer serum. Approximately 130 sialylated glycoproteins are identified using microLC-MS/MS. Sialylated plasma protease C1 inhibitor is identified to be down-regulated in cancer serum. Changes in glycosylation sites in cancer serum are also observed by glycopeptide mapping using microLC-ESI-TOF-MS where the N83 glycosylation of alpha1-antitrypsin is down regulated. In addition, the glycan structures of the altered proteins are assigned using MALDI-QIT-MS. This strategy offers the ability to quantitatively analyze changes in glycoprotein abundance and detect the extent of glycosylation alteration as well as the carbohydrate structure that correlate with cancer.

摘要

本研究开发了一种用于鉴定人类癌症血清中唾液酸化糖蛋白标志物的策略。该方法包括三个步骤:凝集素亲和选择、液相分离以及使用质谱对糖蛋白标志物进行表征。在这项工作中,我们使用三种不同的凝集素(麦胚凝集素(WGA)、接骨木凝集素(SNA)、黑穗醋栗凝集素(MAL))从正常血清和癌症血清中提取唾液酸化糖蛋白。使用IgY-12抗体柱从血清中去除12种高丰度蛋白。使用不同的凝集素柱能够监测癌症血清与正常样本中α(2,3)和α(2,6)连接型唾液酸化的分布情况。提取的糖蛋白先通过NPS-RP-HPLC进行分级分离,然后进行SDS-PAGE。使用质谱对目标糖蛋白进行进一步表征,以阐明碳水化合物结构和糖基化位点。我们将这种方法应用于胰腺癌血清中唾液酸化糖蛋白的分析。使用微液相色谱-串联质谱(microLC-MS/MS)鉴定出约130种唾液酸化糖蛋白。已确定唾液酸化血浆蛋白酶C1抑制剂在癌症血清中表达下调。通过使用微液相色谱-电喷雾电离-飞行时间质谱(microLC-ESI-TOF-MS)进行糖肽图谱分析,还观察到癌症血清中糖基化位点的变化,其中α1-抗胰蛋白酶的N83糖基化下调。此外,使用基质辅助激光解吸电离-四极杆离子阱质谱(MALDI-QIT-MS)确定了改变蛋白的聚糖结构。该策略能够定量分析糖蛋白丰度的变化,检测糖基化改变的程度以及与癌症相关的碳水化合物结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验