Suppr超能文献

通过凸集投影对稀疏采样的3D k空间数据进行磁共振图像重建。

MR image reconstruction of sparsely sampled 3D k-space data by projection-onto-convex sets.

作者信息

Peng Haidong, Sabati Mohammad, Lauzon Louis, Frayne Richard

机构信息

Department of Radiology, University of Calgary, and Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Calgary, Alberta, Canada T2N 2T9.

出版信息

Magn Reson Imaging. 2006 Jul;24(6):761-73. doi: 10.1016/j.mri.2005.12.028. Epub 2006 Mar 23.

Abstract

In many rapid three-dimensional (3D) magnetic resonance (MR) imaging applications, such as when following a contrast bolus in the vasculature using a moving table technique, the desired k-space data cannot be fully acquired due to scan time limitations. One solution to this problem is to sparsely sample the data space. Typically, the central zone of k-space is fully sampled, but the peripheral zone is partially sampled. We have experimentally evaluated the application of the projection-onto-convex sets (POCS) and zero-filling (ZF) algorithms for the reconstruction of sparsely sampled 3D k-space data. Both a subjective assessment (by direct image visualization) and an objective analysis [using standard image quality parameters such as global and local performance error and signal-to-noise ratio (SNR)] were employed. Compared to ZF, the POCS algorithm was found to be a powerful and robust method for reconstructing images from sparsely sampled 3D k-space data, a practical strategy for greatly reducing scan time. The POCS algorithm reconstructed a faithful representation of the true image and improved image quality with regard to global and local performance error, with respect to the ZF images. SNR, however, was superior to ZF only when more than 20% of the data were sparsely sampled. POCS-based methods show potential for reconstructing fast 3D MR images obtained by sparse sampling.

摘要

在许多快速三维(3D)磁共振(MR)成像应用中,例如使用移动床技术跟踪血管系统中的对比剂团注时,由于扫描时间限制,无法完全采集到所需的k空间数据。解决此问题的一种方法是对数据空间进行稀疏采样。通常,k空间的中心区域会被完全采样,而周边区域则进行部分采样。我们通过实验评估了凸集投影(POCS)算法和零填充(ZF)算法在重建稀疏采样的3D k空间数据方面的应用。采用了主观评估(通过直接图像可视化)和客观分析[使用标准图像质量参数,如全局和局部性能误差以及信噪比(SNR)]。与ZF相比,POCS算法被发现是一种强大且稳健的方法,可用于从稀疏采样的3D k空间数据重建图像,这是一种大幅减少扫描时间的实用策略。POCS算法重建出了真实图像的忠实表示,并在全局和局部性能误差方面相对于ZF图像提高了图像质量。然而,只有当超过20%的数据被稀疏采样时,SNR才优于ZF。基于POCS的方法在重建通过稀疏采样获得的快速3D MR图像方面显示出潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验