Browning Kirsteen N, Zheng Zhongling, Gettys Thomas W, Travagli R Alberto
Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
J Physiol. 2006 Sep 15;575(Pt 3):761-76. doi: 10.1113/jphysiol.2006.111104. Epub 2006 Jul 6.
We demonstrated recently that increasing the levels of cAMP allows opioids to modulate GABAergic synaptic transmission between the nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV). Using a combination of electrophysiological, immunohistochemical and biochemical approaches, we provide evidence that vagal afferent fibres dampen cAMP levels within the vagal brainstem circuits via tonic activation of group II metabotropic glutamate receptors (mGluRs). Whole-cell patch-clamp recordings were made from identified neurons of the rat DMV. Following chronic vagal deafferentation, the opioid agonist methionine-enkephalin (ME) inhibited the amplitude of evoked IPSC (eIPSC) in 32 of 33 neurons, without exogenous enhancement of cAMP levels. The ME-induced inhibition was prevented by the group II mGluR-selective agonist APDC. Following perfusion with the group II mGluR-selective antagonist EGLU, ME inhibited eIPSC amplitude in brainstem slices of control rats. Immunohistochemical experiments revealed that, following vagal deafferentation, mu-opioid receptors were colocalized on GABAergic profiles apposing DMV neurons; the number of colocalized profiles was significantly decreased by pretreatment with APDC. Radioimmunoassay and Western blot analysis showed that cAMP and phosphorylated cyclic AMP response element binding protein (pCREB) levels in the dorsal vagal complex were increased following vagal deafferentation. Our data show that by tonically dampening the levels of cAMP within the GABAergic synaptic contacts, activated group II mGluRs prevent the modulation of this synapse by endogenous opioids. These data suggest that the plasticity, hence the response, of central circuits controlling the vagal motor outflow to visceral organs is modulated and finely tuned by vagal afferent fibres.
我们最近证明,提高环磷酸腺苷(cAMP)水平可使阿片类药物调节孤束核(NTS)与迷走神经背运动核(DMV)之间的GABA能突触传递。通过结合电生理学、免疫组织化学和生物化学方法,我们提供证据表明,迷走神经传入纤维通过II组代谢型谷氨酸受体(mGluRs)的紧张性激活来降低迷走神经脑干回路中的cAMP水平。从大鼠DMV的特定神经元进行全细胞膜片钳记录。在慢性迷走神经去传入后,阿片类激动剂甲硫氨酸脑啡肽(ME)在33个神经元中的32个中抑制了诱发的抑制性突触后电流(eIPSC)的幅度,而无需外源性提高cAMP水平。II组mGluR选择性激动剂APDC可阻止ME诱导的抑制作用。在用II组mGluR选择性拮抗剂EGLU灌注后,ME抑制了对照大鼠脑干切片中eIPSC的幅度。免疫组织化学实验表明,在迷走神经去传入后,μ-阿片受体与与DMV神经元相对的GABA能轮廓共定位;用APDC预处理可使共定位轮廓的数量显著减少。放射免疫测定和蛋白质印迹分析表明,迷走神经去传入后,迷走神经背侧复合体中的cAMP和磷酸化环磷酸腺苷反应元件结合蛋白(pCREB)水平升高。我们的数据表明,通过紧张性降低GABA能突触接触中的cAMP水平,激活的II组mGluRs可阻止内源性阿片类药物对该突触的调节。这些数据表明,控制迷走神经向内脏器官运动输出的中枢回路的可塑性以及因此的反应,受到迷走神经传入纤维的调节和精细调整。