Suppr超能文献

葡萄球菌肠毒素I(SEI)与人主要组织相容性复合体II类分子复合物的晶体结构。

Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule.

作者信息

Fernández Marisa M, Guan Rongjin, Swaminathan Chittoor P, Malchiodi Emilio L, Mariuzza Roy A

机构信息

Instituto de Estudios de la Inmunidad Humoral, Laboratorio de Inmunología Estructural, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.

出版信息

J Biol Chem. 2006 Sep 1;281(35):25356-64. doi: 10.1074/jbc.M603969200. Epub 2006 Jul 6.

Abstract

Superantigens are bacterial or viral proteins that elicit massive T cell activation through simultaneous binding to major histocompatibility complex (MHC) class II and T cell receptors. This activation results in uncontrolled release of inflammatory cytokines, causing toxic shock. A remarkable property of superantigens, which distinguishes them from T cell receptors, is their ability to interact with multiple MHC class II alleles independently of MHC-bound peptide. Previous crystallographic studies have shown that staphylococcal and streptococcal superantigens belonging to the zinc family bind to a high affinity site on the class II beta-chain. However, the basis for promiscuous MHC recognition by zinc-dependent superantigens is not obvious, because the beta-chain is polymorphic and the MHC-bound peptide forms part of the binding interface. To understand how zinc-dependent superantigens recognize MHC, we determined the crystal structure, at 2.0 A resolution, of staphylococcal enterotoxin I bound to the human class II molecule HLA-DR1 bearing a peptide from influenza hemagglutinin. Interactions between the superantigen and DR1 beta-chain are mediated by a zinc ion, and 22% of the buried surface of peptide.MHC is contributed by the peptide. Comparison of the staphylococcal enterotoxin I.peptide.DR1 structure with ones determined previously revealed that zinc-dependent superantigens achieve promiscuous binding to MHC by targeting conservatively substituted residues of the polymorphic beta-chain. Additionally, these superantigens circumvent peptide specificity by engaging MHC-bound peptides at their conformationally conserved N-terminal regions while minimizing sequence-specific interactions with peptide residues to enhance cross-reactivity.

摘要

超抗原是细菌或病毒蛋白,可通过同时结合主要组织相容性复合体(MHC)II类分子和T细胞受体引发大量T细胞活化。这种活化导致炎性细胞因子的失控释放,从而引起中毒性休克。超抗原与T细胞受体不同的一个显著特性是它们能够独立于与MHC结合的肽而与多个MHC II类等位基因相互作用。先前的晶体学研究表明,属于锌家族的葡萄球菌和链球菌超抗原与II类β链上的高亲和力位点结合。然而,锌依赖性超抗原对MHC进行混杂识别的基础并不明显,因为β链是多态性的,且与MHC结合的肽构成了结合界面的一部分。为了了解锌依赖性超抗原如何识别MHC,我们以2.0埃的分辨率确定了与携带来自流感血凝素肽的人类II类分子HLA-DR1结合的葡萄球菌肠毒素I的晶体结构。超抗原与DR1β链之间的相互作用由锌离子介导,肽-MHC埋藏表面的22%由肽贡献。将葡萄球菌肠毒素I-肽-DR1结构与先前确定的结构进行比较,发现锌依赖性超抗原通过靶向多态性β链保守取代的残基实现对MHC的混杂结合。此外,这些超抗原通过在其构象保守的N端区域与MHC结合的肽结合,同时尽量减少与肽残基的序列特异性相互作用以增强交叉反应性,从而规避肽的特异性。

相似文献

1
2
Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence.
EMBO J. 2001 Jul 2;20(13):3306-12. doi: 10.1093/emboj/20.13.3306.

引用本文的文献

1
Remodeling of Paranasal Sinuses Mucosa Functions in Response to Biofilm-Induced Inflammation.
J Inflamm Res. 2024 Feb 26;17:1295-1323. doi: 10.2147/JIR.S443420. eCollection 2024.
2
Novel insights into the immune response to bacterial T cell superantigens.
Nat Rev Immunol. 2024 Jun;24(6):417-434. doi: 10.1038/s41577-023-00979-2. Epub 2024 Jan 15.
3
Docking-Based Prediction of Peptide Binding to MHC Proteins.
Methods Mol Biol. 2023;2673:237-249. doi: 10.1007/978-1-0716-3239-0_17.
4
Superantigens, a Paradox of the Immune Response.
Toxins (Basel). 2022 Nov 18;14(11):800. doi: 10.3390/toxins14110800.
6
Superantigens Impair Monocytes/Macrophages Inducing Cell Death and Inefficient Activation.
Front Immunol. 2020 Jan 15;10:3008. doi: 10.3389/fimmu.2019.03008. eCollection 2019.
8
Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes.
Protein Sci. 2015 Nov;24(11):1856-73. doi: 10.1002/pro.2792. Epub 2015 Sep 8.
9
Structure of Staphylococcal Enterotoxin E in Complex with TCR Defines the Role of TCR Loop Positioning in Superantigen Recognition.
PLoS One. 2015 Jul 6;10(7):e0131988. doi: 10.1371/journal.pone.0131988. eCollection 2015.

本文引用的文献

1
How TCRs bind MHCs, peptides, and coreceptors.
Annu Rev Immunol. 2006;24:419-66. doi: 10.1146/annurev.immunol.23.021704.115658.
3
Unusual features of self-peptide/MHC binding by autoimmune T cell receptors.
Immunity. 2005 Oct;23(4):351-60. doi: 10.1016/j.immuni.2005.09.009.
5
Binding of natural variants of staphylococcal superantigens SEG and SEI to TCR and MHC class II molecule.
Mol Immunol. 2006 Mar;43(7):927-38. doi: 10.1016/j.molimm.2005.06.029. Epub 2005 Jul 14.
6
Likelihood-enhanced fast translation functions.
Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):458-64. doi: 10.1107/S0907444905001617. Epub 2005 Mar 24.
8
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
9
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
10
MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W615-9. doi: 10.1093/nar/gkh398.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验