Fernández Marisa M, Guan Rongjin, Swaminathan Chittoor P, Malchiodi Emilio L, Mariuzza Roy A
Instituto de Estudios de la Inmunidad Humoral, Laboratorio de Inmunología Estructural, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
J Biol Chem. 2006 Sep 1;281(35):25356-64. doi: 10.1074/jbc.M603969200. Epub 2006 Jul 6.
Superantigens are bacterial or viral proteins that elicit massive T cell activation through simultaneous binding to major histocompatibility complex (MHC) class II and T cell receptors. This activation results in uncontrolled release of inflammatory cytokines, causing toxic shock. A remarkable property of superantigens, which distinguishes them from T cell receptors, is their ability to interact with multiple MHC class II alleles independently of MHC-bound peptide. Previous crystallographic studies have shown that staphylococcal and streptococcal superantigens belonging to the zinc family bind to a high affinity site on the class II beta-chain. However, the basis for promiscuous MHC recognition by zinc-dependent superantigens is not obvious, because the beta-chain is polymorphic and the MHC-bound peptide forms part of the binding interface. To understand how zinc-dependent superantigens recognize MHC, we determined the crystal structure, at 2.0 A resolution, of staphylococcal enterotoxin I bound to the human class II molecule HLA-DR1 bearing a peptide from influenza hemagglutinin. Interactions between the superantigen and DR1 beta-chain are mediated by a zinc ion, and 22% of the buried surface of peptide.MHC is contributed by the peptide. Comparison of the staphylococcal enterotoxin I.peptide.DR1 structure with ones determined previously revealed that zinc-dependent superantigens achieve promiscuous binding to MHC by targeting conservatively substituted residues of the polymorphic beta-chain. Additionally, these superantigens circumvent peptide specificity by engaging MHC-bound peptides at their conformationally conserved N-terminal regions while minimizing sequence-specific interactions with peptide residues to enhance cross-reactivity.
超抗原是细菌或病毒蛋白,可通过同时结合主要组织相容性复合体(MHC)II类分子和T细胞受体引发大量T细胞活化。这种活化导致炎性细胞因子的失控释放,从而引起中毒性休克。超抗原与T细胞受体不同的一个显著特性是它们能够独立于与MHC结合的肽而与多个MHC II类等位基因相互作用。先前的晶体学研究表明,属于锌家族的葡萄球菌和链球菌超抗原与II类β链上的高亲和力位点结合。然而,锌依赖性超抗原对MHC进行混杂识别的基础并不明显,因为β链是多态性的,且与MHC结合的肽构成了结合界面的一部分。为了了解锌依赖性超抗原如何识别MHC,我们以2.0埃的分辨率确定了与携带来自流感血凝素肽的人类II类分子HLA-DR1结合的葡萄球菌肠毒素I的晶体结构。超抗原与DR1β链之间的相互作用由锌离子介导,肽-MHC埋藏表面的22%由肽贡献。将葡萄球菌肠毒素I-肽-DR1结构与先前确定的结构进行比较,发现锌依赖性超抗原通过靶向多态性β链保守取代的残基实现对MHC的混杂结合。此外,这些超抗原通过在其构象保守的N端区域与MHC结合的肽结合,同时尽量减少与肽残基的序列特异性相互作用以增强交叉反应性,从而规避肽的特异性。