Suppr超能文献

核糖核苷酸还原酶模块性:铜绿假单胞菌中ATP-锥结构域的非典型重复。

Ribonucleotide reductase modularity: Atypical duplication of the ATP-cone domain in Pseudomonas aeruginosa.

作者信息

Torrents Eduard, Westman MariAnn, Sahlin Margareta, Sjöberg Britt-Marie

机构信息

Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden.

出版信息

J Biol Chem. 2006 Sep 1;281(35):25287-96. doi: 10.1074/jbc.M601794200. Epub 2006 Jul 7.

Abstract

The opportunistic pathogen Pseudomonas aeruginosa, which causes serious nosocomial infections, is a gamma-proteobacterium that can live in many different environments. Interestingly P. aeruginosa encodes three ribonucleotide reductases (RNRs) that all differ from other well known RNRs. The RNR enzymes are central for de novo synthesis of deoxyribonucleotides and essential to all living cells. The RNR of this study (class Ia) is a complex of the NrdA protein harboring the active site and the allosteric sites and the NrdB protein harboring a tyrosyl radical necessary to initiate catalysis. P. aeruginosa NrdA contains an atypical duplication of the N-terminal ATP-cone, an allosteric domain that can bind either ATP or dATP and regulates the overall enzyme activity. Here we characterized the wild type NrdA and two truncated NrdA variants with precise N-terminal deletions. The N-terminal ATP-cone (ATP-c1) is allosterically functional, whereas the internal ATP-cone lacks allosteric activity. The P. aeruginosa NrdB is also atypical with an unusually short lived tyrosyl radical, which is efficiently regenerated in presence of oxygen as the iron ions remain tightly bound to the protein. The P. aeruginosa wild type NrdA and NrdB proteins form an extraordinarily tight complex with a suggested alpha4beta4 composition. An alpha2beta2 composition is suggested for the complex of truncated NrdA (lacking ATP-c1) and wild type NrdB. Duplication or triplication of the ATP-cone is found in some other bacterial class Ia RNRs. We suggest that protein modularity built on the common catalytic core of all RNRs plays an important role in class diversification within the RNR family.

摘要

机会致病菌铜绿假单胞菌可引发严重的医院感染,它是一种γ-变形菌,能在多种不同环境中生存。有趣的是,铜绿假单胞菌编码三种核糖核苷酸还原酶(RNRs),这些酶均与其他知名的RNRs不同。RNR酶对于脱氧核糖核苷酸的从头合成至关重要,是所有活细胞所必需的。本研究中的RNR(I类a型)是由含有活性位点和变构位点的NrdA蛋白以及含有启动催化所需的酪氨酰自由基的NrdB蛋白组成的复合物。铜绿假单胞菌NrdA的N端ATP-结构域存在非典型重复,该变构结构域可结合ATP或dATP并调节酶的整体活性。在此,我们对野生型NrdA和两个具有精确N端缺失的截短NrdA变体进行了表征。N端ATP-结构域(ATP-c1)具有变构功能,而内部ATP-结构域缺乏变构活性。铜绿假单胞菌NrdB也具有非典型性,其酪氨酰自由基的寿命异常短暂,在有氧存在时可有效再生,因为铁离子与该蛋白紧密结合。铜绿假单胞菌野生型NrdA和NrdB蛋白形成了一种异常紧密的复合物,推测其组成为α4β4。截短的NrdA(缺乏ATP-c1)与野生型NrdB的复合物推测组成为α2β2。在其他一些细菌的I类a型RNRs中也发现了ATP-结构域的重复或三重重复。我们认为,基于所有RNRs共同催化核心构建的蛋白质模块化在RNR家族的类别多样化中起着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验