Ono Eiichiro, Fukuchi-Mizutani Masako, Nakamura Noriko, Fukui Yuko, Yonekura-Sakakibara Keiko, Yamaguchi Masaatsu, Nakayama Toru, Tanaka Takaharu, Kusumi Takaaki, Tanaka Yoshikazu
Institute for Advanced Technology, Department of Research and Development, and Institute for Healthcare Science, Suntory Ltd., 1-1-1 Wakayamadai, Mishima, Osaka 618-8503, Japan.
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11075-80. doi: 10.1073/pnas.0604246103. Epub 2006 Jul 10.
Flower color is most often conferred by colored flavonoid pigments. Aurone flavonoids confer a bright yellow color on flowers such as snapdragon (Antirrhinum majus) and dahlia (Dahlia variabilis). A. majus aureusidin synthase (AmAS1) was identified as the key enzyme that catalyzes aurone biosynthesis from chalcones, but transgenic flowers overexpressing AmAS1 gene failed to produce aurones. Here, we report that chalcone 4'-O-glucosyltransferase (4'CGT) is essential for aurone biosynthesis and yellow coloration in vivo. Coexpression of the Am4'CGT and AmAS1 genes was sufficient for the accumulation of aureusidin 6-O-glucoside in transgenic flowers (Torenia hybrida). Furthermore, their coexpression combined with down-regulation of anthocyanin biosynthesis by RNA interference (RNAi) resulted in yellow flowers. An Am4'CGT-GFP chimeric protein localized in the cytoplasm, whereas the AmAS1(N1-60)-RFP chimeric protein was localized to the vacuole. We therefore conclude that chalcones are 4'-O-glucosylated in the cytoplasm, their 4'-O-glucosides transported to the vacuole, and therein enzymatically converted to aurone 6-O-glucosides. This metabolic pathway is unique among the known examples of flavonoid, including anthocyanin biosynthesis because, for all other compounds, the carbon backbone is completed before transport to the vacuole. Our findings herein not only demonstrate the biochemical basis of aurone biosynthesis but also open the way to engineering yellow flowers for major ornamental species lacking this color variant.
花的颜色通常由有色黄酮类色素赋予。橙酮黄酮类色素赋予诸如金鱼草(Antirrhinum majus)和大丽花(Dahlia variabilis)等花朵明亮的黄色。已鉴定出金鱼草金黄素合酶(AmAS1)是催化从查耳酮生物合成橙酮的关键酶,但过表达AmAS1基因的转基因花朵未能产生橙酮。在此,我们报道查耳酮4'-O-葡萄糖基转移酶(4'CGT)对于体内橙酮生物合成和黄色形成至关重要。在转基因花朵(杂交夏堇)中,Am4'CGT和AmAS1基因的共表达足以积累金黄素6-O-葡萄糖苷。此外,它们的共表达与通过RNA干扰(RNAi)下调花青素生物合成相结合,产生了黄色花朵。Am4'CGT-GFP嵌合蛋白定位于细胞质中,而AmAS1(N1-60)-RFP嵌合蛋白定位于液泡中。因此,我们得出结论,查耳酮在细胞质中进行4'-O-葡萄糖基化,其4'-O-葡萄糖苷转运至液泡,并在其中酶促转化为橙酮6-O-葡萄糖苷。这条代谢途径在已知的黄酮类化合物例子中是独特的,包括花青素生物合成,因为对于所有其他化合物,碳骨架在转运至液泡之前就已完成。我们在此的发现不仅证明了橙酮生物合成的生化基础,还为工程改造缺乏这种颜色变体的主要观赏物种的黄色花朵开辟了道路。