Haiduke Roberto L A, Bruns Roy E
Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil.
J Phys Chem A. 2005 Mar 24;109(11):2680-8. doi: 10.1021/jp045357u.
The molecular dipole moment and its derivatives are determined from atomic charges, atomic dipoles, and their fluxes obtained from AIM formalism and calculated at the MP2(FC)/6-311++G(3d,3p) level for 16 molecules: 6 diatomic hydrides, CO, HCN, OCS, CO2, CS2, C2H2, C2N2, H2O, H2CO, and CH4. Root-mean-square (rms) errors of 0.052 D and 0.019 e are found for the dipole moments and their derivatives calculated using AIM parameters when compared with those obtained directly from the MP2(FC)/6-311++G(3d,3p) calculations and 0.097 D and 0.049 e when compared to the experimental values. The major deviations occur for the NaH, HF, and H2O molecules. Parallel polar tensor elements for the diatomic and linear polyatomic molecules, except H2, HF, LiH, and NaH, have values resulting from cancellations of substantial contributions from atomic charge fluxes and atomic dipole fluxes. These fluxes have a large negative correlation coefficient, -0.97. IR fundamental intensity sums for CO, HCN, OCS, CO2, CS2, C2H2, C2N2, H2CO, and CH4 calculated using AIM charges, charge fluxes, and atomic dipole fluxes have rms errors of 14.9 km mol(-1) when compared with sums calculated directly from the molecular wave function and 36.2 km mol(-1) relative to experimental values. The classical model proposed here to calculate dipole-moment derivatives is compared with the charge-charge flux-overlap model long used by spectroscopists for interpreting IR vibrational intensities. The utility of the AIM atomic charges and dipoles was illustrated by calculating the forces exerted on molecules by a charged particle. AIM quantities were able to reproduce forces due to a +0.1 e particle over a 3-8-A separation range for the CO and HF molecules in collinear and perpendicular arrangements. These results show that IR intensities do contain information relevant to the study of intermolecular interactions.
分子偶极矩及其导数由原子电荷、原子偶极及其通量确定,这些量通过AIM形式体系获得,并在MP2(FC)/6 - 311++G(3d,3p)水平上对16个分子进行计算:6种双原子氢化物、CO、HCN、OCS、CO2、CS2、C2H2、C2N2、H2O、H2CO和CH4。与直接从MP2(FC)/6 - 311++G(3d,3p)计算得到的偶极矩及其导数相比,使用AIM参数计算得到的偶极矩及其导数的均方根(rms)误差分别为0.052 D和0.019 e;与实验值相比,误差分别为0.097 D和0.049 e。主要偏差出现在NaH、HF和H2O分子中。除H2、HF、LiH和NaH外,双原子和线性多原子分子的平行极张量元素的值是由原子电荷通量和原子偶极通量的大量贡献相互抵消而产生的。这些通量具有很大的负相关系数,为−0.97。使用AIM电荷、电荷通量和原子偶极通量计算得到的CO、HCN、OCS、CO2、CS2、C2H2、C2N2、H2CO和CH4的红外基频强度总和,与直接从分子波函数计算得到的总和相比,均方根误差为1十四点九千米每摩尔(−1),相对于实验值为36.2千米每摩尔(−1)。这里提出的用于计算偶极矩导数的经典模型与光谱学家长期用于解释红外振动强度的电荷 - 电荷通量 - 重叠模型进行了比较。通过计算带电粒子对分子施加的力,说明了AIM原子电荷和偶极的实用性。对于共线和垂直排列的CO和HF分子,AIM量能够在3 - 8埃的分离范围内重现由 +0.1 e粒子产生的力。这些结果表明,红外强度确实包含与分子间相互作用研究相关的信息。